Kıyı ekosistemlerinde ekolojik riskin zamansal değişiminin izlenmesi: Edremit Lagünü (Balıkesir) örneği

Kıyı oku gibi bir kum bariyeri ile denizden ayrılmış sığ su kütlesi olan lagünler, son derece zenginve hassas ekosistemlerdir. Ancak, son yıllarda yapılan bilimsel araştırmalar lagün ekosistemlerininantropojenik etkiler nedeniyle ekolojik risk sorunları yaşadığını göstermektedir. Bu çalışmanınamacı; Edremit ilçesi (Balıkesir, Türkiye) sınırlarında yer alan Edremit Lagünü’nde potansiyel toksikelement (PTE) kaynaklı ekolojik risk seviyesinin zamansal değişimini analiz etmektir. Çalışmakapsamında; lagünden 1 adet 28 cm uzunluğunda karot alınmıştır. Sediment örnekleri kullanılarakklorofil bozunma ürünleri, toplam organik karbon ve PTE konsantrasyonları analiz edilmiştir.Zenginleşme faktörü ve jeoakümülasyon indeksi ile PTE’lerin doğal-antropojenik kaynakları tespitedilmiştir. Modifiye ekolojik risk indeksi ve modifiye potansiyel ekolojik risk indeksiyle ekolojik riskseviyesi belirlenmiştir. Toksik risk seviyesi toksik risk indeksi ile analiz edilmiştir. PTE’lerin muhtemelkaynakları çok değişkenli istatistiksel analizlerle belirlenmiş, Arc – Map 10.5 yazılımıyla haritalamaişlemleri yapılmıştır. Çalışma kapsamında elde edilen bulgulara göre; Mo ve Mn dışında hiçbirPTE zenginleşmemiştir. Cd hariç hiçbir PTE ekolojik risk yaratmamaktadır. Lagünde düşük seviyedeekolojik ve toksik risk bulunmaktadır. Hg, As ve Mn gelecekte ekolojik ve toksik riski arttırabilecekPTE’ler olarak tanımlanmıştır. Bu nedenle; Hg, As, Mn’nin lagün ekosistemine deşarjının sınırlandırılmasıiçin gerekli önlemlerin alınması önerilmektedir.

Monitoring the temporal change of ecological risk in coastal ecosystems: The case of Edremit Lagoon, (Balıkesir, Türkiye)

Lagoons, which a shallow body of water separated from the sea by a sand barrier, such as acoastal arrow, are extremely rich and sensitive ecosystems. However, recent scientific studiesshow that lagoon ecosystems undergo ecological risk problems due to anthropogenic effects.This study aimed to analyze the temporal variation of the ecological risk level caused bypotentially toxic elements (PTEs) in Edremit Lagoon located in the borders of Edremit district(Balıkesir, Türkiye). A 28-cm core was taken from the lagoon. Chlorophyll degradation products,total organic carbon and PTE concentrations were analyzed using sediment samples. Thenatural-anthropogenic sources of PTEs were determined by the enrichment factor and thegeoaccumulation index. The ecological risk level was determined with the modified ecologicalrisk index and the modified potential ecological risk index. Toxic risk level was analyzed bytoxic risk index. PTE’s possible sources were determined by multivariate statistical analysisand mapping was done with Arc – Map 10.5 software. According to the findings, no PTE wasenriched except for Mo and Mn. No PTE was found to pose an ecological risk except for Cd. A lowlevel of ecological and toxic risk existed in the lagoon. Hg, As and Mn have been identified as thePTEs that may increase ecological and toxic risk in the future. Therefore, it is recommended totake necessary measures to limit the discharge of Hg, As, Mn into the lagoon ecosystem.

___

  • Accornero, A., Gnerre, R., & Manfra, L. (2008). Sediment concentrations of trace metals in the Berre Lagoon (France): An assessment of contamination. Archives of Environmental Contamination and Toxicology, 54, 372-385, https://link. springer.com/article/10.1007/s00244-007-9049-6
  • Alevkayalı Ç., & Tağıl Ş. (2020). Edremit Körfezi’nde tarımsal arazi kullanımı uygunluk düzeylerinin değerlendirilmesi, Coğrafya Dergisi, 40, 135 – 147. https://doi.org/10.26650/JGEOG2019-0028
  • Ali, M.M., Ali, L.M., Proshad, R., Islam, S., Rahman, Z., Tusher, T.R., & Kormoker, T. (2020). Heavy metal concentrations in commercially valuable fishes with health hazard inference from Karnaphuli River, Bangladesh, Human and ecological risk assessment, 26, 2646–2662, https://doi,org/10,1080/10807039,2019,1676635
  • Bat, L., Özkan, E. Y., Büyükışık, H. B., & Öztekin, H. C. (2017). Assessment of metal pollution in sediments along Sinop peninsula of the Black Sea. International Journal of Marine Science, 7, (22), 205 - 213. https://doi.org/10.5376/ijms.2017.07.0022
  • Botello, A.V., Villanueva, F.S., & Rivera, R.F. (2018). Analysis and tendencies of metals and POPs in a sediment core from the Alvarado Lagoon system (ALS), Veracruz, Mexico, Archive Environmental Contamination Toxicology, 75, 157–173, https://doi, org/10,1007/s00244-018-0516-z
  • Brady, J.P., Ayoko, G.A., Martens, W.N., & Goonetilleke, A. (2015). Development of a hybrid pollution index for heavy metals in marine and estuarine sediments. Environmental Monitoring and Assessment, 187, https://doi.org/10.1007/s10661-015-4563-x
  • Coordination of Information on the Environment (2018). https:// land.copernicus.eu/pan-european/corine-land-cover
  • Cürebal, İ., Efe, R., Soykan, A., & Sönmez, S. (2014) Ecogeography of Kaz Mountain ecosystem, Elsevier Procedia - Social and Behavioral Sciences, 120, 167 – 175.
  • Efe, R., Soykan, A., Cürebal, İ., Atasoy, E., & Sönmez, S. (2012). Ecological conditions and distribution of vegetation on southern slopes of Kaz Mountain. Journal of Balkan Ecology, 15, (4), 373– 382.
  • Efe, R., Soykan, A., Cürebal, İ., & Sönmez, S. (2013). Edremit Yöresi yağhaneleri geçmişten günümüze zeytin zeytinyağı ve sabun sanayii. Komili - Ana Gıda Yayınları, Mataş Matbaacılık.
  • Folger, D. (1974). Texture and organic carbon content of bottom sediments in some Estuaries of the United States. Environmental Framework of Estuaries, Geol. Sac. America, 1, 391 - 408.
  • Fural, Ş. (2020). İkizcetepeler baraj gölü çökellerinin (Balıkesir) ekolojik risk analizi. (Tez yayın numarası. 641963) [Doktora tezi, Balıkesir Üniversitesi], YÖK Ulusal Tez Merkezi. https://tez.yok.gov. tr/UlusalTezMerkezi/tezSorguSonucYeni.jsp
  • Fural, Ş., Kükrer, S., Aykır, D., & Cürebal, İ. (2022). Ecological degradation and non-carcinogenic health risks of potential toxic elements: a GIS-based spatial analysis for Doganci Dam (Turkey). Environmental Monitoring and Assessment, 194, https://doi. org/10.1007/s10661-022-09870-4
  • Gaudette, H. E., Flight, W. R., Toner, L., & Folger, W. (1974). An inexpensive titration method for the determination of organic carbon in recent sediments. Journal of Sedimentary Petrology, 44, 249-253.
  • Hakanson, L. (1980). An ecological risk index for aquatic pollution control: A sedimentological approach. Water Research, 14, 975- 1001. https://doi.org/10.1016/0043-1354(80)90143-8
  • Kaya, H., Erginal, G., Çakır, Ç., Gazioğlu, C., & Erginal, A. (2017). Ecological risk evaluation of sediment core samples, Lake Tortum (Erzurum, NE Turkey) using environmental indices. International Journal of Environment and Geoinformatics, 4, 227-239. https:// doi.org/10.30897/ijegeo.348826
  • Kükrer, S., Çakır, Ç., Kaya, H., & Erginal, E. A. (2019). Historical record of metals in Lake Küçükçekmece and Lake Terkos (Istanbul, Turkey) based on anthropogenic impacts and ecological risk assessment. Environmental Forensics, 4, 385-401. https://doi.org/10.1 080/15275922.2019.1657985
  • Kükrer, S., Erginal, A. E., Kılıç, Ş., Bay, Ö., Akarsu, T., & Öztura, E. (2020). Ecological risk assesment of surface sediments of Çardak Lagoon along a human disturbance gradient. Environmental Monitoring and Assessment, 192, https://doi.org/10.1007/ s10661-020-08336-9
  • Khaledian, Y., Pereira, P., Brevik, E.C., Pundyte, N., & Paliulis, D. (2016). The ınfluence of organic carbon and pH on heavy metals, potassium, and magnesium levels in Lithuanian Podzols. Land Degradation & Development, 28, 345-354. https://doi. org/10.1002/ldr.2638
  • Li, W., Dou, Z., Cui, L., Zhao, X., Zhang, M., Zhang, Y., Gao, C., Yang, Z., Lei Y., & Pan X. (2020), Soil fauna diversity at different stages of reed restoration in a lakeshore wetland at Lake Taihu, China. Ecosystem Health and Sustainability, 6, https://doi.org/10,1080 /20964129,2020,1722034
  • Lorenzen, C. (1971). Chlorophyll-degradation products in sediments of Black Sea. Woods Hole Oceanographic Institution Contribution, 28, 426-428.
  • Lorenzana, M.R., Yeow, Y.A., Colman, J,T., Chappell, L.L., & Choudhury, H. (2008). Arsenic in seafood: Speciation ıssues for human health risk assessment, Human and Ecological Risk Assessment: An International Journal, 15, 185-200.
  • MacDonald, D., Ingersoll, C., & Berger, T. (2000). Development and evaluation of consensus-based sediment quality guidelines for freshwater ecosystems. Archive Environmental Contamination Toxicology, 39, 20-31. https://doi.org/10.1007/s002440010075
  • Magni, L. F., Castro, N. L., & Rendina, A. E. (2021). Evaluation of heavy metal contamination levels in river sediments and their risk to human health in urban areas: A case study in the Matanza-Riachuelo Basin, Argentina. Environmental Research, 197. https:// doi.org/10.1016/j.envres.2021.110979
  • Mutlu,E., & Kurnaz A. (2018). Assessment of physicochemical parameters and heavy metal pollution in Çeltek Pond water, Indian Journal of Geo-Marine Sciences, 47, (6), 1185 – 1192.
  • Müller, G. (1969). Index of geo-accumulation in sediments of the Rhine river. Geochemistry, Journal, 2,108 -118.
  • Nargis, A., Rashid, H. O., Jhumur, A. K., Haque, M. E., Islam, M. N., & Habib, A. (2019). Human health risk assessment of toxic elements in fish species collected from the river Buriganga, Bangladesh. Human and Ecological Risk Assessment: An International Journal, 26, (1), 120-146.
  • Obi, C.C., Adebusoye, S.A., Ugoji, E.O., Ilori, M.O., Amund, O.O., & Hickey, W.J. (2016). Microbial communities in sediments of Lagos Lagoon, Nigeria: Elucidation of community structure and potential ımpacts of contamination by municipal and industrial wastes. Frontiers in Microbiology, 7, 1213, https://doi.org/10,3389/ fmicb,2016,01213
  • Özkan, E. Y., Fural, Ş., Kükrer, S., & Büyükışık, H. B. (2022). Seasonal and spatial variations of ecological risk from potential toxic elements in the southern littoral zone of İzmir Inner Gulf, Turkey. Environmental Science and Pollution Research, 29, 62669– 62689. https://doi.org/10.1007/s11356-022-19987-1
  • Siegenthaler, U., & Sarmiento, J. (1993). Atmospheric carbon dioxide and ocean. Nature Science, 365, 119 - 125.
  • Sutherland, R. A. (2000). Bed sediment-associated trace metals in an urban stream, Oahu, Hawaii. Environmental Geology, 39, 611- 627. https://doi.org/10.1007/s002540050473
  • Uluturhan , E., Kontaş, A., & Can, E. (2011). Sediment concentrations of heavy metals in the Homa Lagoon (Eastern Aegean Sea): Assessment of contamination and ecological risks. Marine Pollution Bulletin, 62, 1989-1997. https://doi.org/10.1016/j.marpolbul. 2011.06.019
  • Ustaoğlu, F., & Islam, M. S. (2020). Potential toxic elements in sediment of some rivers at Giresun, Northeast Turkey: A preliminary assessment for ecotoxicological status and health risk. Ecological Indicators, 113, 106237. https://doi.org/10.1016/j. ecolind.2020.106237
  • Ustaoğlu, F., Islam, S., & Tokatlı, C. (2022). Ecological and probabilistic human health hazard assessment of heavy metals in Sera Lake Nature Park sediments (Trabzon, Turkey), Arabian Journal of Geosciences, 15, (597) , https://doi,org/10,1007/s12517- 022-09838-1
  • Varol, M, (2020), Environmental, ecological and health risks of trace metals in sediments of a large reservoir on the Euphrates River (Turkey), Environmental Research, 187, https://doi,org/ 10,1016/j,envres,2020,109664
  • Wang, L., Dai, L., Li, L., & Liang, T. (2018). Multivariable cokriging prediction and source analysis of potentially toxic elements (Cr, Cu, Cd, Pb, and Zn) in surface sediments from Dongting Lake, China. Ecological Indicators, 94, 312-319.
  • Walkley, A., & Black, I. (1934). An examination of the Degthareff method far determining soil organic matter and a proposed modification of the chromic acid titration method. Soil Science, 27, 29-38. http://dx.doi.org/10.1097/00010694-193401000-00003
  • Wei, J., & Cen K. (2020). Assessment of human health risk based on characteristics of potential toxic elements (PTEs) contents in foods sold in Beijing, China, Science of The Total Environment, 703, https://doi.org/10.1016/j.scitotenv.2019.134747
  • Yılmaz, T. (2015). Ağır metallerin (Pb, Zn, Cu, Cd) bazı karayosunu türlerinin klorofil içeriği üzerine etkisi. (Tez yayın numarası. 411620) [Yüksek lisans tezi, Niğde Ömer Halisdemir Üniversitesi], YÖK Ulusal Tez Merkezi. https://tez.yok.gov.tr/UlusalTezMerkezi/tez- SorguSonucYeni.jsp
  • Yılmaz, E. (2018).Edremit Çayı Havzası’nın (Balıkesir) uygulamalı jeomorfolojisi. (Tez yayın numarası. 512870) [Yüksek lisans tezi, Balıkesir Üniversitesi], YÖK Ulusal Tez Merkezi. https://tez.yok. gov.tr/UlusalTezMerkezi/tezSorguSonucYeni.jsp
  • Yucel-Gier, G., Kacar, A., Gönül, L.T., Pazi, L., Küçüksezgin, F., Erarslanoğlu, N., & Toker, S.K. (2018). Evaluation of the relationship of picoplankton and viruses to environmental variables in a lagoon system (Çakalburnu Lagoon, Turkey), Chemistry and Ecology, 34 (3), 211–228. https://doi.org/ 10,1080/02757540,2018,1427230
  • Zhang, G., Bai, J., & Zhao, Q. (2016). Heavy metals in wetland soils along a wetland-forming chronose quence in the Yellow River Delta of China: Levels, sources and toxic risks. Ecological Indicators, 69, 331–339. https://doi.org/ 10.1016/j.ecolind. 2016.04.042
  • Zonta R., Cassin D., Pini R., & Dominik J. (2019) Assessment of heavy metal and as contamination in the surface sediments of Po delta lagoons (Italy), Estuarine, Coastal and Shelf Science, 225. https://doi.org/10.1016/j.ecss.2019.05.017
Türk Coğrafya Dergisi-Cover
  • ISSN: 1302-5856
  • Başlangıç: 1943
  • Yayıncı: Türk Coğrafya Kurumu