KOAH erken tanısında spirometri dışındaki yöntemler
Kronik obstrüktif akciğer hastalığı (KOAH) tüm dünyada mortalite ve morbidite nedenidir. KOAH tanısı, klinik semptomların varlığında 1. saniye içinde bronkodilatör sonrası zorlu ekspirasyon hacminin 1. saniye içinde zorlu ekspiratuvar vital kapasiteye (FEV1/FVC) oranının 0.7’den küçük olması ile konulur. KOAH’ın karakteristik bir özelliği olan hava akımının kalıcı olarak kısıtlanması tekrarlanabilir ve en sık kullanılan akciğer fonksiyon testidir, spirometri ile ölçülür. Küçük hava yolu hastalığı ve parankimal yıkım, KOAH patogenezinde farklı oranlarda rol oynar ve zamanla kronik hava akımı kısıtlanmasıyla sonuçlanır. Bu patolojiler her zaman aynı anda birlikte olmayabilir ve KOAH patogenezine katkısı kişiden kişiye farklılık gösterir. Küçük hava yolu hastalığının KOAH patogenezindeki yeri kanıtlanmıştır. Küçük hava yolu hastalığı; mukus, düz kas hipertrofisi, inflamatuvar infiltrasyon veya hava duvarı kalınlaşmasına bağlı olarak geliştiğinde, sonuç artan direnç ve havalanma bozukluğu olmaktadır. Parankimal yıkım görüntüleme metodları ile tahmin edilebilir. KOAH hastasının ilk değerlendirmesinde, eşlik eden akciğer hastalıkları ve/veya ayırıcı tanıda görüntüleme metodlarından faydalanılır. KOAH tanısı henüz spirometri ile kanıtlanmayan ancak tanısı alternatif yöntem ve yaklaşımlara dayanan semptomatik bireylere ilgi artmaktadır. Günümüzde spirometriye alternatif yöntem ve yaklaşımlar genellikle klinik araştırmalar için kullanılmasına rağmen, KOAH hastalarını erken aşamada saptayabilmek için klinisyene fırsat sunmaktadır. Bu amaçla, KOAH henüz kanıtlanmamışken erken tanıda spirometri dışındaki mevcut yöntemleri tartışacağız.
The methods other than spirometry in the early diagnosis of COPD
Chronic obstructive pulmonary disease (COPD) is a major cause of mortalityand morbidity around the world. The diagnosis od COPD is based on thepresence of clinical symptoms and the fact that the ratio of post-bronhodilatorforced expiratory volume in 1 second to forced expiratory vital capacity(FEV1/FVC) is less than 0.70. Persistent limitation of airflow which is a characteristicsof COPD is reproducible and most common lung function test that is why itis usually measured by spirometry. The small airway diseases and the parenchymal destruction play a role in the pathogenesis of COPD at different ratesover time resulting in chronic airflow limitation. These pathologies are notalways together at the same time and the contribution of those to the development of COPD differ from one individual to another. The pathophysiological involvement of small airways in COPD has been confirmed. When theobstruction of the small airways occur either by mucus, smooth muscle hypertrophy, inflammatory infiltration or air wall thickening; then the consequenceis the increased resistance and ventilation impairment. The parenchymaldestruction can be estimated via scanning and at the initial assessment of aCOPD patient, it gives information about the concomitant pulmonary diseasesand/or differential diagnosis. There is an increasing interest on symptomaticindividuals whose whose COPD diagnosis has not been confirmed yet withspirometry but diagnosis is based on alternative methods and approaches.Although these methods nowadays are commonly used for the clinicalresearch, they will offer an opportunity to the clinician to find out the COPDpatients at an early stage. Herein we will discuss the available methods otherthan spirometry in the early diagnosis of COPD before the overt disease isconfirmed.
___
- 1. Martin C, Frija J, Burgel P. Dysfunctional lung anatomy and small airways degeneration in COPD. Int J Chron Obstruct PulmonDis 2013;8:7-13.
- 2. Celli BR, Decramer M, Wedzicha JA, Wilson KC, Agustí A, Criner GJ, et al. An Official American Thoracic Society/ European Respiratory Society Statement: Research questions in chronic obstructive pulmonary disease. Am J Respir Crit Care Med 2015;191:e4-e27.
- 3. Contoli M, Bousquet J, Fabbri LM, Magnussen H, Rabe KF, Siafakas NM, et al. Smallairways and distal lung compartment in asthma and COPD: a time for reappraisal. Allergy 2010;65:141-51.
- 4. Global Initiative for Chronic Obstructive Lung Diseases (GOLD). Accessed date: 20.01.2019. Available from https://goldcopd.org/wp-content/uploads/2018/11/ GOLD-2019-v1.7-FINAL-14Nov2018-WMS.pdf
- 5. Miller MR, Hankinson J, Brusasco V, Burgos F, Casaburi R, Coates A, et al. Standardisation of spirometry. Eur Respir J 2005;26:319-38.
- 6. Mohamed Hoesein FA, Zanen P, Lammers JW. Lower limit of normal or FEV1/FVC< 0.70 in diagnosing COPD: an evidence based review. Respir Med 2011;105:907-15.
- 7. Turato G, Zuin R, Miniati M, Baraldo S, Rea F, Beghé B, et al. Airway inflammation in severe chronic obstructive pulmonary disease: relationship with lung function and radiologic emphysema. Am J Respir Crit Care Med 2002;166:105-10.
- 8. Sorkness RL, Bleecker ER, Busse WW, Calhoun JW, Mario Castro M, Chung KF, et al. Lung function in adults with stable but severe asthma: air trapping and incomplete reversal of obstruction with bronchodilation. J Appl Physiol 2008;104:394-403.
- 9. Kendrick A. FRC%TLC and RV% TLC to assess effects of lung disease: comparison to FEV1%FVC. European Respiratory Journal. ERS International Congress 2015;Sep 26-30; Amsterdam; Netherlands. Eur Respir J 2015;46(Suppl 59): PA1576.
- 10. Robinson PD, Latzin P, Verbanck S, Hall GL, Horsley A, Gappa M, et al. Consensus statement for inert gas washout measurement using multiple- and single- breath tests. Eur Respir J 2013;41:507-22.
- 11. Buist AS, Ross BB. Quantitative analysis of the alveolar plateau in the diagnosis of early airway obstruction. Am Rev Respir Dis 1973;108:1078-87.
- 12. Burgel PR. The role of small airways in obstructive airway diseases. Eur Respir Rev 2011;20:119, 23-33.
- 13. Husemann K, Berg N, Engel J, Port J, Joppek C, Tao Zet, et al. Double tracer gas single-breath washout: reproducibility in healthy subjects and COPD. Eur Respir J 2014;44:1210-22.
- 14. Berend N, Wright JL, Thurlbeck WM, Marlin GE, Woolcock AJ. Small airways disease: Reproducibility of measurements and correlation with lung function. Chest 1981;79:263-8.
- 15. Van Muylem A, De Vuyst P, Yernault JC, Paiva M. Inert gas single-breath washout and structural alteration of respiratory bronchioles. Am Rev Respir Dis 1992;146:1167-72.
- 16. Gennimata SA, Palamidas A, Karakontaki F, Kosmas EN, Koutsoukou A, Loukides S, et al. Pathophysiology of evolution of small airways disease to overt COPD. COPD 2010;7:269-75.
- 17. Mikamo M, Shirai Ta, Mori K, Shishido Y Akita T, Morita S, et al. Predictors of phase III slope of nitrogen single-breath washout in COPD. Respir Physiol Neurobiol 2013;189:42- 6.
- 18. Boeck L, Gensmer A, Nyilas S, Stieltjes B, Re TJ, Tamm M, et al. Single-breath washout tests to assess small airway disease in COPD. Chest 2016;150:1091-100.
- 19. Downie SR, Salome CM, Verbanck S, Thompson B, Norbert Berend N, King GG. Ventilation heterogeneity is a major determinant of airway hyperresponsiveness in asthma, independent of airway inflammation. Thorax 2007;62:684e9.
- 20. von Nieding G, Löllgen H, Smidt U, Linde H. Simultaneous washout of helium and sulfur hexafluoride in healthy subjects and patients with chronic bronchitis, bronchial asthma, and emphysema. Am Rev Respir Dis 1977;116:649-60.
- 21. Liu B, Zhou Q, He B. The application of multiple breath nitrogen washout in chronic obstructive pulmonary disease. Zhonghua Jie He He Hu Xi Za Zhi 2015;38:492-6.
- 22. Verbanck S, Schuermans D, Paiva M, Meysman M, Vincken W. Small airway function improvement after smoking cessation in smokers without airway obstruction. Am J Respir Crit Care Med 2006;174:853-7.
- 23. Burkhardt R, Pankow W. The diagnosis of chronic obstructive pulmonary disease. Dtsch Arztebl Int 2014;111:834- 45, quiz 846.
- 24. Criner R, Martinez C, Hatt CR, Galbán CJ, Ross BD, Kazerooni EA. Relationship between diffusion capacity and small airway abnormality in COPD Gene. American Thoracic Society International Conference, 2018 May 18-23; San Diego; USA; American Journal of Respiratory and Critical Care Medicine 2018;197:A1032.
- 25. Harvey BG, Strulovici-Barel Y, Kaner RJ, Sanders A, Vincent TL, Mezey JG, et al. Risk ofCOPD with obstruction in active smokers with normal spirometry and reduced diffusion capacity. Eur Respir J 2015;46:1589-97.
- 26. Uptodate. Accessed date: 20.01.2019. Available from:https://www.uptodate.com/contents/diffusing-capacity-for-carbon-monoxide
- 27. Urbankowski T, Przybyłowski T. Methods of airway resistance assessment. Pneumonol Alergol Pol 2016;84:134-41.
- 28. Brashier B, Salvi S. Measuring lung function using soundwaves: role of the forced oscillation technique and impulse oscillometry system. Breathe (Sheff) 2015;11:57-65.
- 29. TanimuraK, Hira T, Sato S, Hasegawa K, Muro S, Kurosawa H, et al. Comparison of two devices for respiratory impedance measurement using a forced oscillation technique: basic study using phantom models. J Physiol Sci 2014;64:377-82.
- 30. Oostveen E, MacLeod D, Lorino H, Farré R, Hantos Z, Desager K, et al. The forced oscillation technique in clinical practice: methodology, recommendations and future developments. ERS task force. Eur Respir J 2003;22:1026-41.
- 31. Goldman MD, Saadeh C, Ross D. Clinical applications of forced oscillation to assess peripheral airway function. Respir Physiol Neurobiol 2005;148:179-94.
- 32. Oppenheimer BW, Goldring RM, Herberg EM, Hofer IS, Reyfman PA, Liautaud S, et al. Distal airway function in symptomatic subjects with normal spirometry following World Trade Center dust exposure. Chest 2007;132:1275- 82.
- 33. Frantz S, Nihlén U, Dencker M, Engström G, Löfdahl CG, Wollmer P. Impulse oscillometry may be of value in detecting early manifestations of COPD. Respir Med 2012;106:1116-23.
- 34. Vestbo J, Anderson W, Coxson HO, Crim C, Dawber F, Edwards L, et al. Evaluation of COPD longitudinally to identify predictive surrogate endpoints (ECLIPSE). Eur Respir J 2008;31:869e73.
- 35. Crim C, Celli B, Edwards LD, Wouters E, Coxson HO, TalSinger R, et al. Respiratory system impedance with impulse oscillometry in healthy and COPD subjects: ECLIPSE baseline results. Respir Med 2011;105:1069-78.
- 36. Su ZQ, Guan WJ, Li SY, Ding M, Chen Y, Jiang M, et al. Significances of spirometry and impulse oscillometry for detecting small airway disorders assessed with endobronchial optical coherence tomography in COPD. Int J Chron Obstruct Pulmon Dis 2018;13:3031-44.
- 37. Wei X, Shi Z, Cui Y, Mi J, Ma Z, Ren J, et al. Impulse oscillometry system as an alternative diagnostic method for chronic obstructive pulmonary disease. Medicine (Baltimore) 2017;96:e8543.
- 38. Nishimura M, Makita H, Nasuhara Y, Hizawa N, Betsuyaku T. Phenotype characterization based upon high-resolution computed tomography findings and reversibility of airflow limitation in chronic obstructive pulmonary disease. Proc Am Thorac Soc 2006;3:544.
- 39. Mohamed Hoesein FA, de Hoop B, Zanen P, Gietema H, Kruitwagen CL, van Ginneken B, et al. CT-quantified emphysema in male heavy smokers: association with lung function decline. Thorax 2011;66:782-7.
- 40. Tsushima K, Sone S, Fujimoto K, Kubo K, Morita S, Takegami M, et al. Identification of occult parechymal disease such as emphysema or airway disease using screening computed tomography. COPD 2010;7:117-25.
- 41. Lutchmedial SM, Creed WG, Moore AJ, Walsh RR, George E, Gentchos EG, et al. How common is airflow limitation in patients with emphysema on CT scan of the chest? Chest 2015;148:176-84.
- 42. Nakano Y, Muro S, Sakai H, Hiral T, Chin K, Tsukino M, et al. Computed tomographic measurements of airway dimensions and emphysema in smokers. Correlation with lung function. Am J Respir Crit Care Med 2000;162:1102- 8.
- 43. Mohamed Hoesein FA, Schmidt M, Mets OM, Gietema HA, Lammers JW, Zanen P, et al. Discriminating dominant computed tomography phenotypes in smokers without or with mild COPD. Respir Med 2014;108:136-43.
- 44. Regan EA, Lynch DA, Curran-Everett D, Curtis JL, Austin JH, Grenier PA. Clinical and radiologic disease in smokers with normal spirometry. JAMA Intern Med 2015;175:1539- 49.
- 45. Charbonnier JP, Pompe E, Moore C, Humphries S, van Ginneken B, Make B, et al. Airway wall thickening on CT: Relation to smoking status and severity of COPD. Respir Med 2019;146:36-41.
- 46. Hochhegger B, Alves GR, Irion KL, Moreira JS. Emphysema index in a cohort of patients with no recognizable lung disease: influence of age. J Bras Pneumol 2012;38:494- 502.
- 47. Dweik RA, Boggs PB, Erzurum SC, Irvin CG, Leigh MW, Lundberg JO, et al. An official ATS clinical practice guideline: interpretation of exhaled nitric oxide levels (FENO) for clinical applications. Am J Respir Crit Care Med 2011;184:602-15.
- 48. Donohue JF, Herje N, Crater G, Rickard K. Characterization of airway inflammation in patients with COPD using fractional exhaled nitric oxide levels: a pilot study. Int J Chron Obstruct Pulmon Dis 2014;9:745-51.
- 49. Chen FJ, Huang XY, Liu YL, GP Lin, Xie CM. Importance of fractional exhaled nitric oxide in the differentiation of asthma–COPD overlap syndrome, asthma, and COPD. Int J Chron Obstruct Pulmon Dis 2016;11:2385-90.
- 50. Corradi M, Majori M, Cacciani GC, Consigli GF, de’Munari E, Pesci A. Increased exhaled nitric oxide in patients with stable chronic obstructive pulmonary disease. Thorax 1999;54:572-5.