GENETIC DIVERSITY IN SODIUM AZIDE INDUCED WHEAT MUTANTS STUDIED BY SSR MARKERS

Yapay yolla indüklenen mutasyonlar, genetik varyasyonun özellikle ıslah gibi çeşitli nedenlerden dolayı küçüldüğü popülasyonlarda, çeşitliliği arttıran araçlardan biridir. Bu çalışmada, sodyum azid (NaN3) kullanılarak indüklenen on dört dördüncü jenerasyon ileri mutant buğday hatlarında, genetik çeşitliliği taramak için Basit Dizi Tekrarları (SSR) belirteçleri kullanıldı. SSR belirteç profillerine göre ortalama polimorfizm oranı (% 29,44), polimorfik bilgi içeriği (PIC; 0,82), belirteç indeksi (Mİ; 1,95) ve belirteç çözünürlük gücü (Rp; 1,31) hesaplandı. İki SSR belirteci, Xwmc170 ve Xcfd6, en yüksek polimorfizm oranına sahip belirteçler olarak tespit edildi. Xgwm626 en yüksek PIC ve Mİ değerlerini, Xcfd6 de ​​en yüksek Rp değerini verdi. Ağırlıksız Çift-Grup Yöntemi ile Aritmetik Ortalama (UPGMA) dendrogramı 15 bitkiyi dört gruba ayırdı. Temel Bileşenler Analizi (PCA) toplam genetik varyasyonun % 88,9'unu gösterdi. Bu çalışma, buğday ıslah programlarında genetik kaynak olarak kullanılmak üzere yeterli genetik çeşitliliğe sahip mutant buğday hatlarını oluşturmak için sodyum azitin etkinliğinin gösterilmesi hususunda yararlı olabilir.

GENETIC DIVERSITY IN SODIUM AZIDE INDUCED WHEAT MUTANTS STUDIED BY SSR MARKERS

Mutations induced artificially way are one of the tools used to increase genetic variation in populations where genetic variation has been shrinking especially due to various reasons one of which is domestication. In this study, Simple Sequence Repeats (SSRs) markers were used to screen genetic diversity in sodium azide (NaN3) induced fourteen fourth-generation advanced wheat mutant lines. The mean values of polymorphism rate (29.44%), polymorphic information content (PIC; 0.82), marker index (MI; 1.95) and resolving power (Rp; 1.31) were calculated according to SSR marker profiles. Two SSRs, Xwmc170 and Xcfd6, were detected as the most polymorphic markers, Xgwm626 proved the highest PIC and MI values, and Xcfd6 gave the highest Rp value. Unweighted Pair Group Method with Arithmetic Mean (UPGMA) dendrogram classified 15 plants into four groups. The Principle Component Analysis (PCA) showed 88.9% of the total genetic variation. The results obtained in the present study might be useful for determining the efficiency of NaN3 for creating mutant wheat lines with enough genetic variability to implement wheat-breeding programs as germplasm resources.

___

  • 1. Abdipour, M., Ebrahim, M., Izadi-Darbandi, A., Mastrangelo, A.M., Najafian, G., Arshad, Y. & Mirniyam, G. 2016. Association between grain size and shape and quality traits, and path analysis of thousand-grain weight in Iranian bread wheat landraces from different geographic regions. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 44: 228-236.
  • 2. Akfirat, S.F. & Uncuoglu, A.A. 2013. Genetic diversity of winter wheat (Triticum aestivum L.) revealed by SSR Markers. Biochemical Genetics, 51: 223-229.
  • 3. Al-Qurainy, F. & Khan, S. 2009. Mutagenic effects of sodium azide and its application in crop improvement. World Applied Sciences Journal, 6(12): 1589-1601.
  • 4. Anderson, J.A., Churchill, G.A., Autrique, J.E., Tanksley, S.D. & Sorrells, M.E. 1993. Optimizing parental selection for genetic linkage maps. Genome, 36(1): 181-186.
  • 5. Doyle, J.J. & Doyle, J.L. 1990. Isolation of plant DNA from fresh tissue. Focus, 12: 13-15.
  • 6. Genc, Y., Oldach, K., Verbyla, A.P., Lott, G., Hassan, M., Tester, M., Wallwork, H. & McDonald, G.K. 2010. Sodium exclusion QTL associated with improved seedling growth in bread wheat under saline stress. Theoretical Applied Genetics, 121: 877-894.
  • 7. Ghaedrahmati, M., Mardi, M., Naghavi, M.R., Haravan, E.M., Nakhoda, B., Azadi, A. & Kazemi, M. 2014. Mapping QTLs associated with salt tolerance related traits in seedling stage of wheat (Triticum aestivum L.). Journal of Agricultural Science and Technology,16: 1413-1428.
  • 8. International Atomic Energy Agency, www.iaea.org/topics/plant-breeding. (Data Accessed: May 2018).
  • 9. Kovach, W.L. 1999. MVSP-A Multivariate Statistical Package for Windows, v. 3.1. Kovach Computing Services, Pentraeth, 133 pp.
  • 10. Lasalita- Zapico, F. & Aguilar, C.H. 2014. Elucidating plant genetic diversity and evolution through bioinformatics: a review of selected studies. 2014. International Conference on Intelligent Agriculture, IPCBEE 63(2014) IACSIT Press, Singapore, DOI: 10.7763/IPCBEE. 2014. V63.6.
  • 11. Mason, A.S. 2015. SSR Genotyping, Plant Genotyping: Methods and Protocols, In: Batley, J. editor. Methods in Molecular Biology, vol. 1245, Springer Science Business Media, New York, 77-89 pp.
  • 12. Najaphy, A., Parchin, R.A. & Farshadfar, E. 2011. Evaluation of genetic diversity in wheat cultivars and breeding lines using Inter Simple Sequence Repeat markers. Biotechnology & Biotechnological Equipment, 25: 2634-2638.
  • 13. Nei, M. & Li, W. 1979. Mathematical model for studying genetic variation in terms of restriction endonucleases. Proceedings of the National Academy of Sciences of the United States of America, 76: 5269-5273.
  • 14. Olsen, O., Wang, X. & Von Wetttesin, D. 1993. Sodium azide mutagenesis: Preferential generation of AT -> GC transitions in the barley Antl8 gene. Proceedings of the National Academy of Sciences of the United States of America, 90: 8043-8047.
  • 15. Powell, W., Morgante, M., Andre, C., Hanafey, M., Vogel, J., Tingey, S. & Rafalski, A. 1996. The comparison of RFLP, RAPD, AFLP SSR (microsatellite) marker for germplasm analysis. Molecular Breeding, 2: 225-238.
  • 16. Prevost, A. & Wilkinson, M.J. 1999. A new system of comparing PCR primers applied to ISSR finger printing of potato cultivars. Theoretical Applied Genetics, 98: 661-668.
  • 17. Sardouie-Nasab, S., Mohammadi-Nejad, G. & Zebarjadi, A. 2013. Haplotype analysis of QTLs attributed to salinity tolerance in wheat (Triticum aestivum). Molecular Biology Reports, 40: 4661-4671.
  • 18. Shahzad, A., Ahmad, M., Iqbal, M., Ahmed, I. & Ali, G.M. 2012. Evaluation of wheat landrace genotypes for salinity tolerance at vegetative stage by using morphological and molecular markers. Genetics and Molecular Research, 11: 679-692.
  • 19. Shewry, P.R. 2009. Wheat. Journal of Experimental Botany, 60: 1537-1553.
  • 20. Turki, N., Shehzad, T., Harrabi, M. & Okuno, K. 2015. Detection of QTLs associated with salinity tolerance in durum wheat based on association analysis. Euphytica, 201: 29-41.
  • 21. Wannajindaporn, A., Poolsawat, O., Chaowiset, W. & Tantasawat, P.A. 2014. Evaluation of genetic variability in in vitro sodium azide-induced Dendrobium ‘Earsakul’ mutants. Genetics and Molecular Research, 13: 5333-5342.
  • 22. Wu, L., Li, M., Yang, X., Yang, T. & Wang, J. 2011. ISSR Analysis of Chlorophytum treated by three kinds of chemical mutagen. Journal of Northeast Agricultural University, 18: 21-25.
  • 23. Xu, Y., Li, S., Li, L., Zhang, X., Xu, H. & An, D. 2013. Mapping QTLs for salt tolerance with additive, epistatic and QTL × treatment interaction effects at seedling stage in wheat. Plant Breeding, 132: 276-283.