CORRELATION PROFILES OF THE ACCUMULATED METALS IN SEAWATER, SEDIMENT AND Pachygrapsus marmoratus (Fabricius) TISSUES IN BLACK SEA (ORDU, TURKEY)

Bu çalışma, bazı metallerin (Al, As, Cd, Cr, Cu, Fe, Mn, Ni, Pb ve Zn) Karadeniz (Ordu, Türkiye) kıyısı boyunca dere ve evsel atık bölgelerine yakın noktalardan örnekleme yapılmış mermer yengeci Pachygrapsus marmoratus (Fabricius)’un dış iskelet, solungaç, hepatopankreas ve kas dokularındaki birikim ilişkilerinini etkileşimlerini araştırmak amacıyla yapılmıştır. Karadeniz boyunca 28 km'lik bir kıyı şeridini kapsayan çalışma alanı 41°03'46.42"-41°07'42.35"N enlemleri ve 37°28'45.63"-37°41'15.29"E boylamları arasındadır. Numunelerin metal içerikleri indüktif eşleşmiş plazma - optik emisyon spektrometrisi (ICP-OES) tekniği ile analiz edilmiştir. Elde edilen sonuçlar birlikte değerlendirildiğinde, sedimentte Fe>Al>Mn>Zn>Cr>Pb>Cu>As>Ni>Cd, suda Fe>Mn>Cr>As>Cd ve yengeç dokularında Al>Fe>Cu>Mn>Zn şeklinde gözlenmiştir. Yengeç örneklerinde, tüm metallerin dokularda birikim miktarının sırası solungaç>dış iskelet>hepatopankreas>kas şeklindedir. Al ve Fe, sediment ve yengeç dokularında baskın metaller iken, deniz suyu örneklerinde Al tespit edilmemiştir. Sediment, su ve yengeç dokularında birikimin etkileşimini ortaya koymak için bir korelasyon testi yapılmıştır. Metal-metal etkileşimleri ve bunların birlikte birikimi korelasyon testi ile tespit edilmiştir. Yengeç dokularında gözlenen, ancak deniz suyu ve sedimentte bulunmayan bu etkileşimler çalışmanın temel noktasını oluşturmuştur. Metal-metal etkileşimleri arasında en fazla anlamlı korelasyon solungaç ve dış iskelette gözlenmiştir. Ayrıca, solungaçlarda ve dış iskeletlerde metal konsantrasyonları daha yüksek bulunmuştur. Dış iskelette Mn-Al (r=0,954, korelasyon p<0,001), solungaçta Al-Fe (r=0,849, korelasyon p<0,001), Mn-Zn (r=0,854, korelasyon p<0,001), hepatopankreasta Al-Zn (r=0,882 korelasyon p<0,001) arasında kuvvetli korelasyonlar tespit edilmiştir. Hepatopankreasta Zn-Cu arasında ise orta dereceli bir korelasyon bulunmuştur. Bu metal-metal etkileşimleri metallothionein aktivitesinin bir sonucu olabilir. Sediment örnekleri ve yengeç dokuları arasında anlamlı ilişki bulunamamıştır (korelasyon p>0,05). Hatta sonuçlar göstermiştir ki deniz suyu ve sedimentindeki metaller, dokudaki birikime direkt dönüşmemiştir. Bu sonuç P. marmoratus'un dokularındaki metal miktarının çevresel kontaminasyonu yansıtmadığını göstermektedir ve aynı zamanda sediment sonuçlarının deniz suyu ve yengeç dokularından daha fazla metal birikimi miktarını gösterdiği tespit edilmiştir.

CORRELATION PROFILES OF THE ACCUMULATED METALS IN SEAWATER, SEDIMENT AND Pachygrapsus marmoratus (Fabricius) TISSUES IN BLACK SEA (ORDU, TURKEY)

This study was performed in order to investigate the interactions of accumulation patterns of some metals (Al, As, Cd, Cr, Cu, Fe, Mn, Ni, Pb and Zn) in exoskeleton, gill, hepatopancreas and muscle tissues of the marbled crab Pachygrapsus marmoratus (Fabricius) sampled from near streams and domestic discharge points along the coastal region of Black Sea along Ordu in Turkey as well as patterns in sediment and seawater samples of the crab sampling sites. The study area covering a coastal stretch of 28 km along Black Sea lies between the latitudes 41°03'46.42"-41°07'42.35"N and longitudes 37°28'45.63"-37°41'15.29"E. The metal contents of the samples were analysed by the inductively coupled plasma - optical emission spectrometry (ICP-OES) technique. The results showed that the accumulation orders of the metals, in a descending order, were Fe>Al>Mn>Zn>Cr>Pb>Cu>As>Ni>Cd in the sediment, Fe>Mn>Cr>As>Cd in the water, and Al>Fe>Cu>Mn>Zn in crab tissues when evaluated together. In the crab samples, the amount of the accumulation of all metals was ordered as gills>exoskeleton>hepatopancreas>muscle. Al and Fe were the predominant metals in the sediment and crab tissues but Al was not detected in the seawater samples. A correlation test was performed to reveal the interaction of accumulation in the sediment, water and crab tissues. Metal-metal interactions and their co-accumulation was detected by correlation test. These interactions which exist in the crab tissues but not in the seawater and sediment were the main point of this study. Gills and exoskeleton displayed the greatest number of significant correlations between metal–metal interactions. Also, metal concentrations were found to be higher in the gills and exoskeleton. Strong correlations between Mn-Al (r=0.954, correlation p<0.001), in the exoskeleton, Al-Fe (r=0.849, correlation p<0.001), Mn-Zn (r=0.854, correlation p<0.001) in the gills, Al-Zn (r=0.882 correlation p<0.001) in the hepatopancreas were determined. Moderate correlations between Zn-Cu were found in the hepatopancreas. These metal-metal interactions may have been a result of metallothionein activity. No significant relations were found between metal levels in sediment samples and crap tissues (p>0.05). The results also showed that metals present in the seawater and sediment did not directly transform to tissue accumulation. This result showed that metal amounts in the tissues of the P. marmoratus did not reflect environmental contaminations and that sediment accumulated higher amounts of metals than seawater and tissues.

___

  • 1. Alcorlo, P., Otero, M., Crehuet, M., Baltanás, A. & Montes, C. 2006. The use of the red swamp crayfish (Procambarus clarkii, Girard) as indicator of the bioavailability of heavy metals in environmental monitoring in the River Guadiamar (SW, Spain). Science of the Total Environment, 366: 380-390.
  • 2. Alexopoulos, E., McCrohan, C.R., Powell, J.J., Jugdaohsingh, R. & White, K.N. 2003. Bioavailability and toxicity of freshly neutralized aluminium to the freshwater crayfish. Pacifastacus leniusculus.Archives of Environmental Contamination and Toxicology, 45(4): 509-514.
  • 3. Álvaroa, N.V., Neto, A.I., Coutoa, R.P., Azevedo, J.M.N. & Rodrigues, A.S. 2016. Crabs tell the difference – Relating trace metal content with land use and landscape attributes. Chemosphere, 144: 1377-1383.
  • 4. Anderson, M.B., Preslan, J.E., Jolibois, L., Bollinger, J.E. & George, W.J. 1997. Bioaccumulation of lead nitrate in red swamp crayfish (Procambarus clarkii). Journal of Hazardous Materials, 54:15-29.
  • 5. Arya, S., Trivedi, J.N. & Vachhrajani, K.D. 2014. Brachyuran crabs as a biomonitoring tool: a conceptual framework for chemical pollution assessment. International Research Journal of Environment Sciences, 3(1): 49-57.
  • 6. Altas, L. & Büyükgüngör, H. 2007. Heavy metal pollution in the Black Sea shore and offshore of Turkey. Environmental Geology, 52: 469-476.
  • 7. Bervoets, L., Blust, R. & Verheyen, R. 2001. Accumulation of metals in the tissues of three Spined Stickelback (Gastrosteus aculeatus) from natural fresh waters. Ecotoxicology and Environmental Safety, 48(2): 117-127.
  • 8. Bochenek, I., Protasowicki, M. & Brucka-Jastrzębska, E. 2008. Concentrations of Cd, Pb, Zn, and Cu in roach Rutilus rutilus (L.) from the lower reaches of the Oder River, and their correlation with concentrations of heavy metals in bottom sediments collected in the same area. Archives of Polish Fisheries, 16: 21-36.
  • 9. Bresler, V., Abelson, A., Fishelson, L., Feldstein, T., Rosenfeld, M. & Mokady, O. 2003. Marine molluscs in environmental monitoring. Helgoland Maine Research, 57: 157-165.
  • 10. Cannicci, S., Paula, J. & Vannini, M. 1999. Activity pattern and spatial strategy in Pachygrapsus marmoratus (Decapoda: Grapsidae) from Mediterranean and Atlantic shores. Marine Biology, 133: 429-435.
  • 11. Chagas, G.C., Brossi-Garcia, A.L., Menegário, A.A., Franchi, M., Carlos, A., Pião, S. & Govone, J.S. 2009. Use of the Freshwater Crab Trichodactylus fluviatilis to Biomonitoring Al and Mn Contamination in River Water. HOLOS Environment, 9(2): 289-300.
  • 12. Chua, A.C.G., Graham, R.M., Trinder, D. & Olynyk, J.K. 2007. The regulation of cellular iron metabolism. Critical Reviews in Clinical Laboratory Sciences, 44: 413-459.
  • 13. Cohen, C.K., Fox, T.C., Garvin, D.F. & Kochian, L.V. 1998. The role of iron-deficiency stress responses in stimulating heavy-metal transport in plants. Plant Physiology, 116: 1063-1072.
  • 14. Fikirdeşici Ergen, Ş., Üçüncü Tunca, E., Ozkan, A.D., Ölmez, T.T., Acaröz, E., Altındağ, A., Tekinay, T. & Tunca, E. 2015. Interactions between metals accumulated in the narrow-clawed crayfish Astacus leptodactylus (Eschscholtz, 1823) in Dikilitaş Lake, Turkey. Chemistry Ecology, 31: 455-465.
  • 15. Filazi, A., Baskaya, R., Kum, C. & Hismiogullari, S.E. 2003. Metal concentrations in tissues of the Black Sea fish Mugil auratus from Sinop-Icliman, Turkey. Human & Experimental Toxicology, 22: 85-87.
  • 16. Guner, U. 2007. Freshwater crayfish Astacus leptodactylus (Eschscholtz, 1823) accumulates and depurates copper. Environmental Monitoring Assessment, 133(1-3): 365-369.
  • 17. Hung, T.C., Meng, P.J., Han, B.C., Chuang, A. & Huang, C.C. 2001. Trace metals indifferent species of mollusca, water and sediments from Taiwan coastal area. Chemosphere, 44: 833-841.
  • 18. Kramer, U., Talke, I.N. & Hanikenne, M. 2007. Transition metal transport. FEBS Letters, 581: 2263-2272.
  • 19. Kasmin, S. 2010. Enforcing ship-based marine pollution for cleaner sea in the strait of malacca. Environmental Asia, 3: 61-65.
  • 20. Kır, I. & Tumantozlu, H. 2012. Karacaören-II Baraj Gölü'ndeki su, sediment ve sazan (Cyprinus carpio) örneklerinde bazı ağır metal birikiminin incelenmesi. Ekoloji Dergisi, 21(82): 65-70.
  • 21. Kurun, A., Balkıs, N., Erkan, M., Balkıs, H., Aksu, A. & Ersan, M.S. 2010. Total metal levels in crayfish Astacus leptodactylus (Eschscholtz, 1823), and surface sediments in Lake Terkos, Turkey. Environmental Monitoring Assessment, 169(1-4): 385-395.
  • 22. Makedonski, L., Peycheva, K. & Stancheva, M. 2017. Determination of heavy metals in selected black sea fish species. Food Control, 72: 313-318.
  • 23. Mendil, D. & Uluözlü, Ö.D. 2007. Determination of trace metal levels in sediment and five fish species from lakes in Tokat, Turkey. Food Chemistry, 101: 739-745.
  • 24. Menon, A.V., Chang, J. & Kim, J. 2016. Mechanisms of divalent metal toxicity in affective disorders. Toxicology, 339: 58-72.
  • 25. Moshtaghie, A.A. & Taher, M. 1993. Aluminium interference with iron absorption by everted gut sac. Journal of Islamic Academy of Sciences, 6(4): 277-281.
  • 26. Naji, A., Ismail, A., Kamrani, E. & Sohrabi, T. 2014. Correlation of MT levels in livers and gills with heavy metals in wild tilapia (Oreochromis mossambicus) from the Klang River, Malaysia. Bulletin of Environmental Contamination and Toxicology, 1-6.
  • 27. Nott, J.A. 1991. Cytology of pollutant metals in marine invertebrates: a review of micro-analytical application. Scanning microscopy, 5: 191-204.
  • 28. Núñez-Nogueira, G., Fernández-Bringas, L., Ordiano-Flores, A. & Gómez-Ponce, A. 2013. Ni accumulation and regulation after experimental exposure to a Cd, Pb, and Zn mixture in the Pacific White Shrimp Penaeus vannamei. Water Air Soil Pollution, 224: 1644.
  • 29. Oner, O. & Celik, A. 2011. Investigation of Some Pollution Parameters in Water and Sediment Samples Collected From the Lower Gediz River Basin. Ekoloji, 20(78): 48-52.
  • 30. Pandya, P.J. & Vachharajani, K.D. 2011. Life Under Ecological Stress: An Estuarine Case Study. Pp. 427-436. In: Gupta, V.K & Verma, A.K. (eds) Animal Diversity, Natural History and Conservation. Daya Publication House, New Delhi, India, xv + 480 pp.
  • 31. Parsa, Y., Nabavi, S.S.M.B., Nabavi, S.N. & Hosseini, M. 2014. Mercury Accumulation in Food Chain of Fish, Crab and Sea Bird from Arvand River. Journal of Marine Science: Research and Development, 4: 2.
  • 32. Phillips, D.J.H. & Rainbow, P.S. 1994. Biomonitoring of Trace Aquatic Contaminants, Chapman and Hall, London, 371 pp.
  • 33. Pourang, N., Dennis, J.H. & Ghourchian, H. 2005. Distribution of heavy metals in Penaeus Semisulcatus from Persian Gulf and possible role of metallothionein in their redistribution during storage. Environmental Monitoring Assessment, 100: 71-88.
  • 34. Quarles, C.D., Jr., Marcus, R.K. & Brumaghim, J.L. 2011. Competitive binding of Fe3+, Cr3+, and Ni2+ to transferrin. Journal of Biological Inorganic Chemistry, 16: 913-921.
  • 35. Rainbow, P.S. 2007. Trace metal bioaccumulation: Models, metabolic availability and toxicity. Environment International, 33: 576-582. 36. Siddon, C.E. & Witman J.D. 2004. Behavioral indirect interactions: Multiple predators effects and prey switching in the rocky subtidal. Ecology, 85: 2938-2945.
  • 37. Soedarini, B., Klaver, L., Roessink, I., Widianarko, B., van Straalen, N.M. & van Gestel, C.A.M. 2012. Copper kinetics and internal distribution in the marbled crayfish (Procambarus sp.). Chemosphere, 87(4): 333-338.
  • 38. Trivedi, J.N., Gadhavi, M.K. & Vachhrajani, K.D. 2012. Diversity and habitat preference of brachyuran crabs in Gulf of Kutch, Gujarat, India. Arthropods, 1: 13-23.
  • 39. Tunca, E., Üçüncü, E., Kurtuluş, B., Ozkan, A.D. & Atasagun, S. 2013a. Accumulation trends of metals and a metalloid in the freshwater crayfish Astacus leptodactylus from Lake Yeniçağa (Turkey). Chemistry and Ecology, 29(8): 754-769.
  • 40. Tunca, E., Ucuncu, E., Ozkan, A.D., Ergul-Ulger, Z., Cansızoğlu, A.E. & Tekinay, T. 2013b. Differences in the accumulation and distribution profile of heavy metals and metalloid between male and female crayfish (Astacus leptodactylus). Bulletin of Environmental Contamination and Toxicology, 90(5): 570-577.
  • 41. Tüzen M. 2003. Determination of heavy metals in fish samples of the middle Black Sea (Turkey) by graphite furnace atomic absorption spectrometry. Food Chemistry, 80: 119-123.
  • 42. Ullah, A., Heng, S, Munis, M.F.H., Fahad, S. & Yang, X. 2015. Phytoremediation of heavy metals assisted by plant growth promoting (PGP) bacteria: A review. Environmental and Experimental Botany, 117: 28-40.
  • 43. Walton, R.C., McCrohan, C.R., Livens, F. & White, K.N. 2010. Trophic transfer of aluminium through an aquatic grazer-omnivore food chain. Aquatic Toxicology, 99: 93-99.
  • 44. Woodburn, K., Walton, R., McCrohan, C. & White, K. 2011. Accumulation and toxicity of aluminium-contaminated food in the freshwater crayfish, Pacifastacus leniusculus. Aquatic Toxicology, 105: 535-542.
  • 45. Yildiz, N. & Yener, G. 2010. Dating of the sediment accumulation rate, radioactive and heavy metal pollution in the Van Lake. Ekoloji, 19(77): 8.