Öğretmen Adaylarının Fen Eğitiminde STEM Uygulamalarına Yönelik Öz-Yeterlik İnanç ve Görüşlerinin İncelenmesi

Bu çalışmanın amacı STEM uygulamaları içeren laboratuvaruygulamaları seçmeli dersi kapsamında öğretmen adaylarının feneğitiminde STEM uygulamalarına yönelik öz yeterlik inanç vegörüşlerinin incelenmesidir. Vaka incelemesi araştırma desenikullanılan bu çalışmada, dersi alan 18 öğretmen adayına STEM’indoğası ve fen öğretiminde kullanımı ile ilgili öğretim yapılmış vesonrasında öğretmen adayları gruplar halinde STEM etkinliklerigeliştirip ders kapsamında uygulamışlardır. Çalışmada kullanılan veritoplama araçları şunlardır: Fen Eğitiminde STEM Uygulamaları ÖzYeterlik Ölçeği, Tanımlayıcı Bilgiler Anketi ve Görüşme Protokolü.Çalışmanın sonuçları dersi alan öğretmen adaylarının STEMetkinliklerini gelecekteki derslerinde uygulamaya yönelik öz-yeterlikinançlarının olumlu yönde geliştiğini göstermiştir. Fen eğitimindeSTEM uygulamalarına yönelik görüşlerin ortaya çıkarılmasınıamaçlayan odak grup görüşmelerine göre ortaya çıkan kategoriler ise;(a) STEM algısı, (b) STEM’i gelecek derslerde kullanma, (c) materyalkullanımı, (d) geliştirilen bilgi ve beceriler ve (e) anlamlı öğrenmeolmuştur. Çalışmanın sonuçları ilgili çalışmalarla karşılaştırılıptartışılmış ve öneriler sunulmuştur.

Investigation of Preservice Teachers’ Self-efficacy Beliefs and Views Regarding STEM Applications in Science Education

The aim of this study is to examine preservice teachers’ self-efficacy beliefs and views regarding STEM applications in science education during laboratory applications elective course involving STEM practices. In this case study, 18 preservice teachers, who took the mentioned course, were taught about the nature and steps of STEM practices and afterwards preservice teachers developed STEM activities in groups and administered these activities in classroom environment. Data collection instruments used in the study are: STEM Applications in Science Education SelfEfficacy Scale, Descriptive Questionnaire and Interview Protocol. The results of the study showed that after taking the course, the participating preservice teachers’ self-efficacy beliefs regarding the use of STEM practices in their future classes were strengthened. According to the focus group interviews, which aimed to reveal the opinions about STEM practices in science education, five categories were revealed: (a) STEM perception, (b) use of STEM in future lessons, (c) use of materials, (d) knowledge and skills developed, and (e) meaningful learning. The findings were compared and discussed with related studies and suggestions were presented.

___

  • Avalos, B. (2011). Teacher professional development in teaching and teacher education over ten years. Teaching and teacher education, 27(1), 10-20. doi: 10.1016/j.tate.2010.08.007
  • Baran, E., Canbazoglu Bilici, S., Mesutoglu, C., & Ocak, C. (2016). Moving STEM beyond schools: Students’ perceptions about an out-of-school STEM education program. International Journal of Education in Mathematics, Science and Technology, 4(1), 9–19. doi:10.18404/ijemst.71338
  • Bers, M. U., Seddighin, S., & Sullivan, A. (2013). Ready for robotics: Bringing together the T and E of STEM in early childhood teacher education. Journal of Technology and Teacher Education, 21(3), 355–377.
  • Bozkurt-Altan, E., Yamak, H., & Buluş-Kırıkkaya, E. (2016). FeTeMM eğitim yaklaşımının öğretmen eğitiminde uygulanmasına yönelik bir öneri: Tasarım temelli fen eğitimi. Trakya Üniversitesi Eğitim Fakültesi Dergisi, 6(2), 212–232.
  • Bybee, R. W. (2010). Advancing STEM education: A 2020 vision. Technology and Engineering Teacher, 70(1), 30– 35.
  • Carr, R., & Strobel, J. (2011). Integrating engineering into secondary math and science curricu-lum: Preparing teachers. Paper presented at the 1st Integrated STEM Education Conference. Ewing, NJ: IEEE
  • Çavaş, B., Bulut, Ç., Holbrook, J., & Rannikmae, M. (2013). Fen eğitimine mühendislik odaklı bir yaklaşım: ENGINEER projesi ve uygulamaları [An engineering-focused approach to science education: ENGINEER projects and applications]. Fen Bilimleri Öğretimi Dergisi, 1(1), 12–22.
  • Creswell, J. W. (2012). Qualitative inquiry and research design: Choosing among five approaches. Sage publications.
  • Dare, E. A., Ring-Whalen, E. A., & Roehrig, G. H. (2019). Creating a continuum of STEM models: Exploring how K-12 science teachers conceptualize STEM education. International Journal of Science Education, 41(12), 1701–1720. doi: 10.1080/09500693.2019.1638531
  • Darling-Hammond, L., & Bransford, J. (2005). Preparing teachers for a changing world: What teachers should learn and be able to do. San Francisco: Jossey Bass
  • Enochs, L. G., & Riggs, I. M. (1990). Further development of an elementary science teaching efficacy belief instrument: A preservice elementary instrument. School Science and Mathematics, 90(8), 694–705.
  • Green, M. (2007). Science and Engineering Degrees: 1966 – 2004 (NSF 07-307). Arlington, VA: National Science Foundation.
  • Günel, M., Özer-Keskin, M., & Keskin-Samanci, N. (2016). A paradigm shift for teachers’ professional development structure in turkey: Moving from instruction to learning. In K. Dikilitaş (Eds.), Innovative professional development methods and strategies for STEM education (pp. 52–72) Hershey, PA: IGI Global.
  • Harlen, W. (1997). Primary teachers’ understanding in science and its impact in the classroom. Research in Science Education, 27(3), 323–337.
  • Hodson, D. 2003. Time for action: Science education for an alternative future. International Journal of Science Education, 25(6), 645–670.
  • Hoy, A. W., & Spero, R. B. (2005). Changes in teacher efficacy during the early years of teaching: a comparison of four measures. Teaching and Teacher Education, 21(4), 343–356. doi: 10.1016/j.tate.2005.01.007
  • Kazempour, M. (2009). Impact of inquiry-based professional development on core conceptions and teaching practices: A case study. Science Educator, 18(2), 56–68.
  • King, D., & English, L. D. (2016). Engineering design in the primary school: Applying stem concepts to build an optical instrument. International Journal of Science Education, 38(18), 2762–2794. doi: 10.1080/09500693.2016.1262567
  • Knoblauch, D., & Woolfolk-Hoy, A. (2008). “Maybe I can teach those kids.” The influence of contextual factors on student teachers’ efficacy beliefs. Teaching and Teacher Education, 24(1), 166–179. doi: 10.1016/j.tate.2007.05.005
  • Kuenzi, J., Matthews, C., & Mangan, B. (2006). Science, technology, engineering, and mathematics (STEM) Education issues and legislative options. Congressional Research Report. Washington, DC: Congressional Research Service.
  • Linn, M. C. (1998). The impact of technology on science instruction: Historical trends and current opportunities. In B. J. Fraser & K. G. Tobin (Eds.), International handbook of science education (pp. 265–294). Dortrecht, The Netherlands: Kluwer Academic Publishers.
  • Means, B., Wang, H., Young, V., Peters, V. L., & Lynch, S. J. (2016). STEM-focused high schools as a strategy for enhancing readiness for postsecondary STEM programs. Journal of Research in Science Teaching, 53(5), 709–736.
  • Milli Eğitim Bakanlığı (MEB). (2013). Okul öncesi eğitim programı. https://tegm.meb.gov.tr/dosya/okuloncesi/ooproram.pdf
  • Milli Eğitim Bakanlığı (MEB). (2016). STEM education report. http://yegitek.meb.gov.tr/STEM_Education_Report.pdf
  • Milli Eğitim Bakanlığı (MEB). (2017). Fen bilimleri dersi öğretim programı (İlkokul ve Ortaokul 3, 4, 5, 6, 7 ve 8. sınıflar) http://mufredat.meb.gov.tr/ProgramDetay.aspx?PID=143
  • Milli Eğitim Bakanlığı (MEB). (2018). Fen bilimleri dersi öğretim programı (İlkokul ve Ortaokul 3, 4, 5, 6, 7 ve 8. sınıflar) http://mufredat.meb.gov.tr/ProgramDetay.aspx?PID=325
  • National Academy of Sciences ‘Rising Above the Gathering Storm’ Committee. (2010). Rising above the gathering storm, revisited: Rapidly approaching category 5. Washington, DC: National Academies Press
  • National Research Council (NRC). (2010). Exploring the intersection of science education and 2lst century skills: A workshop summary. Washington, DC: National Academies Press.
  • National Research Council (NRC). (2011). Successful K-12 STEM education: Identifying effective approaches in science, technology, engineering, and mathematics. Washington, DC: National.
  • National Research Council (NRC). (2012). A framework for K-12 science education: Practices, crosscutting concepts, and core ideas. Washington, DC: National Academies Press.
  • National Science Foundation. (1996). Shaping the future: New expectations for undergraduate education in science, mathematics, engineering, and technology. Washington, D.C. :National Science Foundation.
  • NGSS Lead States (2013). Next generation science standards: For states, by states. Washington: The National Academies Press.
  • Nugent, G., Barker, B., Welch, G., Grandgenett, N., Wu, C. R., & Nelson, C. (2015). A model of factors contributing to STEM learning and career orientation. International Journal of Science Education, 37(7), 1067–1088. doi:10.1080/09500693.2015.1017863
  • Olgan, R. (2008). A longitudinal analysis of science teaching and learning in kindergarten and first-grade. (Unpublished doctoral dissertation), Florida State University, Tallahasee.
  • Olgan, R. (2015). Influences on Turkish early childhood teachers’ science teaching practices and the science content covered in the early years. Early Child Development and Care, 185(6), 926–942.
  • Özçelik, A., & Akgündüz, D. (2018). Üstün/Özel yetenekli öğrencilerle yapılan okul dışı STEM eğitiminin değerlendirilmesi. Trakya Üniversitesi Eğitim Fakültesi Dergisi, 8(2), 334–351.
  • PCAST (President’s Council of Advisors on Science and Technology). (2010). Prepare and inspire: K-12 education in STEM (science, technology, engineering and math) for America’s future. http://www.whitehouse.gov/sites/default/files/microsites/ostp/pcast-stemed-report.pdf
  • Ring, E. A., Dare, E. A., Crotty, E. A., & Roehrig, G. H. (2017). The evolution of teacher conceptions of STEM education throughout an intensive professional development experience. Journal of Science Teacher Education, 28(5), 444–467. doi: 10.1080/1046560X.2017.1356671
  • Rivkin, S. G., Hanushek, E. A., & Kain, J. F. (2005). Teachers, schools, and academic achievement. Econometrica, 73(2), 417–458. doi:10.1111/j.1468-0262.2005.00584.x
  • Sungur Gül, K., & Marulcu, İ. (2014). Yöntem olarak mühendislik-dizayna ve ders materyali olarak legolara öğretmen ile öğretmen adaylarının bakış açılarının incelenmesi. International Periodical for The Languages, Literature and History of Turkish or Turkic, 9(2), 761–786.
  • Tekkaya, C., Cakiroglu, J., & Özkan, Ö. (2004). Turkish pre-service science teachers’ understanding of science and their confidence in teaching it. Journal of Education for Teaching, 30(1), 57–66
  • Yamak, H., Bulut, N., & Dündar, S. (2014). 5. sınıf öğrencilerinin bilimsel süreç becerileri ile fene karşı tutumlarına FeTeMM etkinliklerinin etkisi. Gazi Eğitim Fakültesi Dergisi, 34(2), 249–265.
  • Zeidler, D. L. (2016). STEM education: A deficit framework for the twenty first century? A sociocultural socioscientific response. Cultural Studies of Science Education, 11(1), 11–26.
Trakya Eğitim Dergisi-Cover
  • ISSN: 2630-6301
  • Yayın Aralığı: Yılda 3 Sayı
  • Başlangıç: 2011
  • Yayıncı: Trakya Üniversitesi Eğitim Fakültesi