ELECTROCHEMICAL BEHAVIOUR AND PERFORMANCE OF FLEXIBLE GRAPHITE YARNS IN DIFFERENT ELECTROLYTES WITH WIDE POTENTIAL WINDOW OF 2 V

ELECTROCHEMICAL BEHAVIOUR AND PERFORMANCE OF FLEXIBLE GRAPHITE YARNS IN DIFFERENT ELECTROLYTES WITH WIDE POTENTIAL WINDOW OF 2 V

Energy storage systems have received increasing attention in recent years because of the requirements of energy supply with respect to the growing population and technology. Among the technologies of energy storage devices, supercapacitors become popular due to their superior characteristics such as high power density, extremely fast charge-discharge capability and long life cycle. A wide variety of materials are already in use to fabricate supercapacitors. Carbon and its derivatives are common materials among the electrode materials of supercapacitors. In this study, electrochemical behaviour of flexible graphite yarns are investigated in different media in order to elucidate the performance of graphite as a supercapacitor material. Electrochemical experiments of graphite electrode are carried out in sodium sulphate (Na2SO4), hydrochloric acid (HCl), potassium hydroxide (KOH) and Ethaline deep eutectic solvent as electrolyte media. Graphite yarn is cycled at wide potential window (from -1 V to 1 V) at various scan rates in the range of 5 to 100 mV s−1 in order to observe the associated electrochemical behaviour and performance. Graphite yarn electrodes without any treatment can be used in Ethaline and aqueous Na2SO4 electrolytes. However, these electrodes cannot be used in acidic or alkaline media with high potential window of 2 V.

___

  • [1] X. Wang, S. Han, Y. Wu, X. Wang, Coverage and energy consumption control in mobile heterogeneous wireless sensor networks, IEEE Trans. Automat. Contr. 58 (2012) 975–988.
  • [2] Z.S. Iro, C. Subramani, S.S. Dash, A brief review on electrode materials for supercapacitor, Int. J. Electrochem. Sci. 11 (2016) 10628–10643. https://doi.org/10.20964/2016.12.50.
  • [3] W. Zuo, R. Li, C. Zhou, Y. Li, J. Xia, J. Liu, Battery‐supercapacitor hybrid devices: recent progress and future prospects, Adv. Sci. 4 (2017) 1600539.
  • [4] A. Borenstein, O. Hanna, R. Attias, S. Luski, T. Brousse, D. Aurbach, Carbon-based composite materials for supercapacitor electrodes: a review, J. Mater. Chem. A. 5 (2017) 12653–12672.
  • [5] M. Vangari, T. Pryor, L. Jiang, Supercapacitors: review of materials and fabrication methods, J. Energy Eng. 139 (2013) 72–79.
  • [6] B. Xie, C. Yang, Z. Zhang, P. Zou, Z. Lin, G. Shi, Q. Yang, F. Kang, C.-P. Wong, Shape-tailorable graphene-based ultra-high-rate supercapacitor for wearable electronics, ACS Nano. 9 (2015) 5636–5645.
  • [7] D.P. Dubal, Advances in flexible supercapacitors for portable and wearable smart gadgets, in: Emerg. Mater. Energy Convers. Storage, Elsevier, 2018: pp. 209–246.
  • [8] H. Li, Z. Tang, Z. Liu, C. Zhi, Evaluating flexibility and wearability of flexible energy storage devices, Joule. 3 (2019) 613–619.
  • [9] W.-J. Song, S. Lee, G. Song, H. Bin Son, D.-Y. Han, I. Jeong, Y. Bang, S. Park, Recent progress in aqueous based flexible energy storage devices, Energy Storage Mater. 30 (2020) 260–286.
  • [10] Y. Li, Z. Kang, X. Yan, S. Cao, M. Li, Y. Liu, S. Liu, Y. Sun, X. Zheng, Y. Zhang, A facile method for the preparation of three-dimensional CNT sponge and a nanoscale engineering design for high performance fiber-shaped asymmetric supercapacitors, J. Mater. Chem. A. 5 (2017) 22559–22567.
  • [11] X. Cheng, X. Gui, Z. Lin, Y. Zheng, M. Liu, R. Zhan, Y. Zhu, Z. Tang, Three-dimensional α-Fe 2 O 3/carbon nanotube sponges as flexible supercapacitor electrodes, J. Mater. Chem. A. 3 (2015) 20927–20934.
  • [12] J. Li, W. Lu, Y. Yan, T.-W. Chou, High performance solid-state flexible supercapacitor based on Fe 3 O 4/carbon nanotube/polyaniline ternary films, J. Mater. Chem. A. 5 (2017) 11271–11277.
  • [13] Y.-Y. Horng, Y.-C. Lu, Y.-K. Hsu, C.-C. Chen, L.-C. Chen, K.-H. Chen, Flexible supercapacitor based on polyaniline nanowires/carbon cloth with both high gravimetric and area-normalized capacitance, J. Power Sources. 195 (2010) 4418–4422.
  • [14] I. Shown, A. Ganguly, L. Chen, K. Chen, Conducting polymer‐based flexible supercapacitor, Energy Sci. Eng. 3 (2015) 2–26.
  • [15] Z. Wang, D.O. Carlsson, P. Tammela, K. Hua, P. Zhang, L. Nyholm, M. Strømme, Surface modified nanocellulose fibers yield conducting polymer-based flexible supercapacitors with enhanced capacitances, ACS Nano. 9 (2015) 7563–7571.
  • [16] C. Meng, C. Liu, L. Chen, C. Hu, S. Fan, Highly flexible and all-solid-state paperlike polymer supercapacitors, Nano Lett. 10 (2010) 4025–4031.
  • [17] S.W. Ali, S. Bairagi, Conductive Polymer Based Flexible Supercapacitor, in: Self-Standing Substrates, Springer, 2020: pp. 211–233.
  • [18] M. Miao, Electrical conductivity of pure carbon nanotube yarns, Carbon N. Y. 49 (2011) 3755–3761. https://doi.org/https://doi.org/10.1016/j.carbon.2011.05.008.
  • [19] Z. Zhang, P. Zhang, D. Zhang, H. Lin, Y. Chen, A new strategy for the preparation of flexible macroscopic graphene fibers as supercapacitor electrodes, Mater. Des. 157 (2018) 170–178.
  • [20] N. He, W. Shan, J. Wang, Q. Pan, J. Qu, G. Wang, W. Gao, Mordant inspired wet-spinning of graphene fibers for high performance flexible supercapacitors, J. Mater. Chem. A. 7 (2019) 6869–6876.
  • [21] Z. Yang, Y. Jia, Y. Niu, Y. Zhang, C. Zhang, P. Li, M. Zhu, Q. Li, One-step wet-spinning assembly of twisting-structured graphene/carbon nanotube fiber supercapacitor, J. Energy Chem. 51 (2020) 434–441.
  • [22] L. Kou, T. Huang, B. Zheng, Y. Han, X. Zhao, K. Gopalsamy, H. Sun, C. Gao, Coaxial wet-spun yarn supercapacitors for high-energy density and safe wearable electronics, Nat. Commun. 5 (2014) 1–10.
  • [23] S. Cai, T. Huang, H. Chen, M. Salman, K. Gopalsamy, C. Gao, Wet-spinning of ternary synergistic coaxial fibers for high performance yarn supercapacitors, J. Mater. Chem. A. 5 (2017) 22489–22494.
  • [24] W.K. Chee, H.N. Lim, N.M. Huang, Electrochemical properties of free‐standing polypyrrole/graphene oxide/zinc oxide flexible supercapacitor, Int. J. Energy Res. 39 (2015) 111–119.
  • [25] Z. Dou, Z. Qin, Y. Shen, S. Hu, N. Liu, Y. Zhang, High–performance flexible supercapacitor based on carbon cloth through in–situ electrochemical exfoliation and re–deposition in neutral electrolyte, Carbon N. Y. 153 (2019) 617–624.
  • [26] F. Hekmat, Y. Tutel, H.E. Unalan, Wearable supercapacitors based on nickel tungstate decorated commercial cotton fabrics, Int. J. Energy Res. 44 (2020) 7603–7616.
  • [27] A.P. Bond, H.H. Uhlig, Corrosion behavior and passivity of nickel‐chromium and cobalt‐chromium alloys, J. Electrochem. Soc. 107 (1960) 488.
  • [28] T.G. Yun, B. Il Hwang, D. Kim, S. Hyun, S.M. Han, Polypyrrole–MnO2-coated textile-based flexible-stretchable supercapacitor with high electrochemical and mechanical reliability, ACS Appl. Mater. Interfaces. 7 (2015) 9228–9234.
  • [29] X. Pu, L. Li, M. Liu, C. Jiang, C. Du, Z. Zhao, W. Hu, Z.L. Wang, Wearable self‐charging power textile based on flexible yarn supercapacitors and fabric nanogenerators, Adv. Mater. 28 (2016) 98–105.
  • [30] Y. Wen, B. Wang, C. Huang, L. Wang, D. Hulicova‐Jurcakova, Synthesis of phosphorus‐doped graphene and its wide potential window in aqueous supercapacitors, Chem. Eur. J. 21 (2015) 80–85.
  • [31] Y.-J. Gu, W. Wen, J.-M. Wu, Wide potential window TiO2@carbon cloth and high capacitance MnO2@carbon cloth for the construction of a 2.6 V high-performance aqueous asymmetric supercapacitor, J. Power Sources. 469 (2020) 228425. https://doi.org/https://doi.org/10.1016/j.jpowsour.2020.228425.
  • [32] L. Demarconnay, E. Raymundo-Piñero, F. Béguin, Adjustment of electrodes potential window in an asymmetric carbon/MnO2 supercapacitor, J. Power Sources. 196 (2011) 580–586. https://doi.org/https://doi.org/10.1016/j.jpowsour.2010.06.013.
  • [33] A.A. Bojang, H.S. Wu, Characterization of electrode performance in enzymatic biofuel cells using cyclic voltammetry and electrochemical impedance spectroscopy, Catalysts. 10 (2020) 782.
  • [34] S. Vinayaraj, K. Brijesh, P.C. Dhanush, H.S. Nagaraja, ZnWO4/SnO2 composite for supercapacitor applications, Phys. B Condens. Matter. 596 (2020) 412369.
The International Journal of Materials and Engineering Technology-Cover
  • Yayın Aralığı: Yılda 2 Sayı
  • Başlangıç: 2018
  • Yayıncı: Necip Fazıl YILMAZ
Sayıdaki Diğer Makaleler

SOLID PARTICLE EROSION PERFORMANCE OF MICRO ARC OXIDATION and ELECTRO SPARK DEPOSITION COATED Ti6Al4V SHEETS

Doğan ACAR, Salim Levent AKTUĞ, Kemal KORKMAZ, Salih DURDU, Ömer Necati CORA

INVESTIGATION OF THE HUB DIAMETER EFFECT ON PROPELLER THRUST

Enes COŞKUN, Mehmet Hanifi DOĞRU

EFFECT OF DIFFERENT AMOUNTS OF CARBON FIBER ADDITIVE ABS ON THERMAL DISTORTION AND COOLING TIME

Ömer EYERCİOĞLU, Engin TEK, Mehmet ALADAĞ, Gülağa TAŞ

ANALYSIS OF WIND TURBINE BLADE PITCH ANGLE CONTROL WITH FUZZY LOGIC

Atakan ARSLAN, Halil EROL

ANALYSIS OF MECHANICAL BEHAVIOR OF TERMOPLASTIC COMPOSITES

Ali Taner KUZU, Elifnur KÖSEMEN, Aysu Hande YÜCEL, Mustafa BAKKAL

EFFECT OF PROPELLERS NUMBERS AND HORIZONTAL DISTANCE IN DESIGN OF VTOL

Mustafa VARKİ, Eyüp YETER, Mehmet Hanifi DOĞRU

ELECTROCHEMICAL BEHAVIOUR AND PERFORMANCE OF FLEXIBLE GRAPHITE YARNS IN DIFFERENT ELECTROLYTES WITH WIDE POTENTIAL WINDOW OF 2 V

Mahmut Furkan KALKAN, Murat ARTAN, Hasan Mithat DELİBAŞ, Abdulcabbar YAVUZ, Necip Fazıl YILMAZ

A STUDY ON THE DESIGN AND PERFORMANCE ANALYSIS OF AN AIR-COOLED WASTE HEAT RECOVERY SYSTEM FOR USE IN MOTORCYCLE ENGINES

Haluk GÜNEŞ, Mehmet Akif KUNT

OPTIMIZATION OF THE MECHANICAL PROPERTIES OF STERCULIASETIGERADELILE FIBRE EPOXY COMPOSITE USING TAGUCHI METHODOLOGY

Nasır MOHAMMED TAHIR, Adamu Umar ALHAJİ, Ibrahim ABDULLAHİ

INVESTIGATION OF FATIGUE BEHAVIOR OF COLLETS WITH MATERIAL STANDARD SAE 4140 AND 50CRMO4 BY ANSYS FINITE ELEMENT METHOD AND FATIGUE TEST DEVICE

Oğuzcan GÜZELİPEK, Tuğrul SOYUSİNMEZ, Furkan ÇETİN