ANALYSIS OF MECHANICAL BEHAVIOR OF TERMOPLASTIC COMPOSITES

ANALYSIS OF MECHANICAL BEHAVIOR OF TERMOPLASTIC COMPOSITES

This paper presents the effect of fiber orientation on the tensile, compression, impact, and flexural properties of glass fiber reinforced acrylic-based thermoplastic composites. The mechanical behavior of three different composite plates, produced by the resin transfer molding (RTM) method, with 0o/90o/45o, 0o/90o and ±45o glass fiber orientations were investigated by carrying out tensile, compression, three-point bending and Charpy impact tests. A Weibull distribution model was implemented to explain the variation in mechanical properties of the acrylic-based composite. According to Weibull analysis results with 63.2% probability, the highest tensile strength (561 MPa), compressive strength (293 MPa) and impact values (19.44 J) were obtained when the plate with 0o/90o glass fiber orientation was tested, whereas the highest flexural strength was obtained when the plate with 0o/90o/45o was tested.

___

  • [1] Kosmann, N., Karsten, J., Schuett, M., Schulte, K., & Fiedler, B. (2015). Determining the effect of voids in GFRP on the damage behaviour under compression loading using acoustic emission. Composites Part B: Engineering, 70, 184-188. doi:10.1016/j.compositesb.2014.11.010.
  • [2] Bazli, M., Jafari, A., Ashrafi, H., Zhao, X., Bai, Y., & Raman, R. S. (2020). Effects of UV radiation, moisture and elevated temperature on mechanical properties of GFRP pultruded profiles. Construction and Building Materials, 231, 117137. doi:10.1016/j.conbuildmat.2019.117137.
  • [3] Bai, Y., & Keller, T. (2011). Delamination and kink-band failure of pultruded GFRP laminates under elevated temperatures and compression. Composite Structures, 93(2), 843-849. doi:10.1016/j.compstruct.2010.07.010.
  • [4] Yu, B., Till, V., & Thomas, K. (2007). Modeling of thermo-physical properties for FRP composites under elevated and high temperature. Composites Science and Technology, 67(15-16), 3098-3109. doi:10.1016/j.compscitech.2007.04.019.
  • [5] Biron, Michel. Thermoplastics and thermoplastic composites. William Andrew, 2018.
  • [6] Pini, T., Caimmi, F., Briatico-Vangosa, F., Frassine, R., & Rink, M. (2017). Fracture initiation and propagation in unidirectional CF composites based on thermoplastic acrylic resins. Engineering Fracture Mechanics, 184, 51-58.
  • [7] Kazemi, M. E., Shanmugam, L., Li, Z., Ma, R., Yang, L., & Yang, J. (2020). Low-velocity impact behaviors of a fully thermoplastic composite laminate fabricated with an innovative acrylic resin. Composite Structures, 250, 112604.
  • [8] Bhudolia, S. K., & Joshi, S. C. (2018). Low-velocity impact response of carbon fibre composites with novel liquid Methylmethacrylate thermoplastic matrix. Composite Structures, 203, 696-708.
  • [9] Obande, W., Ray, D., & Brádaigh, C. M. Ó. (2019). Viscoelastic and drop-weight impact properties of an acrylic-matrix composite and a conventional thermoset composite–A comparative study. Materials Letters, 238, 38-41.
  • [10] Boumbimba, R. M., Coulibaly, M., Khabouchi, A., Kinvi-Dossou, A., Bonfoh, N., & Gerard, P. (2017). Glass fibres reinforced acrylic thermoplastic resin-based tri-block copolymers composites: Low velocity impact response at various temperatures. Composite Structures, 160, 939-951.
  • [11] Kinvi-Dossou, G., Boumbimba, R. M., Bonfoh, N., Koutsawa, Y., Eccli, D., & Gerard, P. (2018). A numerical homogenization of E-glass/acrylic woven composite laminates: Application to low velocity impact. Composite Structures, 200, 540-554.
  • [12] Bhudolia, S. K., Perrotey, P., & Joshi, S. C. (2018). Mode I fracture toughness and fractographic investigation of carbon fibre composites with liquid Methylmethacrylate thermoplastic matrix. Composites Part B: Engineering, 134, 246-253.
  • [13] Kinvi-Dossou G, Boumbimba RM, Bonfoh N, Garzon-Hernandez S, Garcia-Gonzalez D, Gerard P, Arias A. Innovative acrylic thermoplastic composites versus conventional composites: Improving the impact performances. Composite Structures. 2019 Jun 1;217:1-3.
  • [14] Kazemi ME, Shanmugam L, Lu D, Wang X, Wang B, Yang J. Mechanical properties and failure modes of hybrid fiber reinforced polymer composites with a novel liquid thermoplastic resin, Elium®. Composites Part A: Applied Science and Manufacturing. 2019 Oct 1;125:105523.
  • [15] Obande W, Mamalis D, Ray D, Yang L, Brádaigh CM. Mechanical and thermomechanical characterisation of vacuum-infused thermoplastic-and thermoset-based composites. Materials & Design. 2019 Aug 5;175:107828.
  • [16] Cousins, Dylan S. Advanced thermoplastic composites for wind turbine blade manufacturing. Colorado School of Mines, 2018.
  • [17] Teimouri, M., Hoseini, S. M., & Nadarajah, S. (2013). Comparison of estimation methods for the Weibull distribution. Statistics, 47(1), 93-109.
The International Journal of Materials and Engineering Technology-Cover
  • Yayın Aralığı: Yılda 2 Sayı
  • Başlangıç: 2018
  • Yayıncı: Necip Fazıl YILMAZ
Sayıdaki Diğer Makaleler

INVESTIGATION OF THE HUB DIAMETER EFFECT ON PROPELLER THRUST

Enes COŞKUN, Mehmet Hanifi DOĞRU

OPTIMIZATION OF THE MECHANICAL PROPERTIES OF STERCULIASETIGERADELILE FIBRE EPOXY COMPOSITE USING TAGUCHI METHODOLOGY

Nasır MOHAMMED TAHIR, Adamu Umar ALHAJİ, Ibrahim ABDULLAHİ

INVESTIGATION OF FATIGUE BEHAVIOR OF COLLETS WITH MATERIAL STANDARD SAE 4140 AND 50CRMO4 BY ANSYS FINITE ELEMENT METHOD AND FATIGUE TEST DEVICE

Oğuzcan GÜZELİPEK, Tuğrul SOYUSİNMEZ, Furkan ÇETİN

ANALYSIS OF WIND TURBINE BLADE PITCH ANGLE CONTROL WITH FUZZY LOGIC

Atakan ARSLAN, Halil EROL

SOLID PARTICLE EROSION PERFORMANCE OF MICRO ARC OXIDATION and ELECTRO SPARK DEPOSITION COATED Ti6Al4V SHEETS

Doğan ACAR, Salim Levent AKTUĞ, Kemal KORKMAZ, Salih DURDU, Ömer Necati CORA

EFFECT OF PROPELLERS NUMBERS AND HORIZONTAL DISTANCE IN DESIGN OF VTOL

Mustafa VARKİ, Eyüp YETER, Mehmet Hanifi DOĞRU

ELECTROCHEMICAL BEHAVIOUR AND PERFORMANCE OF FLEXIBLE GRAPHITE YARNS IN DIFFERENT ELECTROLYTES WITH WIDE POTENTIAL WINDOW OF 2 V

Mahmut Furkan KALKAN, Murat ARTAN, Hasan Mithat DELİBAŞ, Abdulcabbar YAVUZ, Necip Fazıl YILMAZ

EFFECT OF DIFFERENT AMOUNTS OF CARBON FIBER ADDITIVE ABS ON THERMAL DISTORTION AND COOLING TIME

Ömer EYERCİOĞLU, Engin TEK, Mehmet ALADAĞ, Gülağa TAŞ

ANALYSIS OF MECHANICAL BEHAVIOR OF TERMOPLASTIC COMPOSITES

Ali Taner KUZU, Elifnur KÖSEMEN, Aysu Hande YÜCEL, Mustafa BAKKAL

A STUDY ON THE DESIGN AND PERFORMANCE ANALYSIS OF AN AIR-COOLED WASTE HEAT RECOVERY SYSTEM FOR USE IN MOTORCYCLE ENGINES

Haluk GÜNEŞ, Mehmet Akif KUNT