Yüksek Performanslı Bina Tasarımında Isı Yalıtım Malzemesi Seçimi İçin Bir Yaklaşım

Bu çalışma, yüksek performanslı bina tasarımında ısı yalıtım malzemesinin seçimi için çok kriterli bir karar verme yaklaşımı sunmaktadır. Önerilen yaklaşım, Türkiye’de yaygın uygulanan bir sosyal konut arketipine uygulanmıştır. Bu amaçla, öncelikle ‘yüksek performans’ için hedeflenen kriterler belirlenmiş, bu kriterler üzerinden bağımsız değişkenler tespit edilmiştir. Bağımsız değişkenler üzerinden parametrik analiz metodu ile alternatif senaryolar üretilmiş, hedeflenen performans kriterleri olan yaşam döngüsü, enerji, maliyet ve çevresel etki değerleri hesaplatılmıştır. Performans hesaplamalarında Energy Plus dinamik simülasyon aracı kullanılmıştır. Sonuçlar, etüt edilen arketip için en iyi alternatifleri belirlemeye yönelik birçok kriterli karar verme yaklaşımı olarak önerilen Ağırlıklı Toplam Metodu (WSM) ile değerlendirilmiştir. Sonuçlar göstermektedir ki; farklı ısıl, çevresel ve ekonomik özelliklere sahip ısı yalıtım malzemeleri içerisinden doğru seçim yapılması, binalarda yüksek performans hedeflerinin sağlanmasında oldukça etkilidir.

An Approach to the Selection of Thermal Insulation Material in High Performance Building Design

This study proposes an approach based on a multiple criteria decision-making method for the selection of thermal insulation material in the design of high performance social housing. The proposed approach has been studied on a common social housing archetype in Turkey. Independent variables such as thermal insulation material and application thicknesses were determined and parametric analysis method was used to investigate the performance of the archetype through 25 alternative scenarios. Secondly, decision making criteria for energy, cost, and environmental impact performances were calculated for each alternative. Calculations were conducted through the Energy Plus dynamic building energy simulation tool. Finally, results were evaluated through the proposed Weighted Sum Method (WSM) as a multiple criteria decision making approach to determine the best alternatives for the studied archetype. Consequently, results show that a proper decision making on selection of thermal insulation material with different environmental and economic attributes, ensures the higher performance of buildings.

___

  • KAYNAKLAR U.S. Energy Information Administration, International Energy Outlook 2017, (https://www.eia.gov/outlooks/ieo/pdf/0484(2017).pdf). Directive 2002/91/EC of the European Parliament and of the Council of 16 December 2002 on the Energy Performance of Buildings. Directive 2010/31/EU of the European Parliament and the Council of 19 May 2010 on the Energy Performance of Buildings (recast). Regulations, Commission Delegated Regulation /EU) 244/2013 of 16 January 2012. Aditya, L., Mahlia, T. M. I., Rismanchi, B., Ng, H. M., Hasan, M. H., Metselaar, H. S. C., Muraza, O., Aditiya, H. B., A Review on Insulation Materials for Energy Conservation in Buildings, Renewable and Sustainable Energy Reviews, 73,1352-1365, 2017, doi:10.1016/j.rser.2017.02.034. Tettey, U. Y. A., Dodoo, A., Gustavsson, L., Primary Energy Implications of Different Wall Insulation Materials for Buildings in a Cold Climate, Energy Procedia, 61, 1204-1207, 2014. Simona, P. L., Spiru, P., Ion, I. V., Increasing the Energy Efficiency of Buildings by Thermal Insulation, Energy Procedia, 128, 393-399, 2017. Menyhart, K., Krarti, M., Potential Energy Savings From Deployment of Dynamic Insulation Materials for Us Residential Buildings, Building and Environment, 114, 203-218, 2017. Lucchi, E., Tabak, M., Troi, A., The “Cost Optimality” Approach for the Internal Insulation of Historic Buildings. Energy Procedia, 133,412-423, 2017. Lee, J., Kim, J., Song, D., Kim, J., Jang, C., Impact of External Insulation and Internal Thermal Density Upon Energy Consumption of Buildings in a Temperate Climate With Four Distinct Seasons, Renewable and Sustainable Energy Reviews, 75, 1081-1088, 2017. Tettey, U. Y. A., Dodoo, A., Gustavsson, L., Effects of Different Insulation Materials On Primary Energy and CO2 Emissions of a Multi-Storey Residential Building, Energy and Buildings, 82, 369-377, 2014. Nematchoua, M. K., Ricciardi, P., Reiter, S., Yvon, A., A Comparative Study on Optimum Insulation Thickness of Walls ond Energy Savings in Equatorial and Tropical Climate, International Journal of Sustainable Built Environment, 6, 170-182, 2017. Braulio-Gonzola, M., Bovea, M. D., Environmental and Cost Performance of Building’s Envelope Insulation Materials to Reduce Energy Demand: Thickness Optimization, Energy and Buildings, 150, 527-545, 2017. Altan Dombaycı, Ö., Gölcü, M., Pancar, Y., Optimization of Insulation Thickness for External Walls Using Different Energy-Sources, Applied Energy, 83, 921-928, 2006. Mohsen, M. S., Akash, B. A., Some Prospects of Energy Savings in Buildings, Energy Conversion and Management, 42, 1307-1315, 2001. Mahlia, T. M. I., Iqbal, A., Cost Benefits Analysis ond Emission Reductions of Optimum Thickness and Air Gaps for Selected Insulation Materials for Building Walls in Maldivs, Energy, 35, 2242-2250, 2010. Ylmen, P., Mjörnell, K., Berlin, J., Arfvidsson, J., The Influence of Secondary Effects on Global Warming and Cost Optimization of Insulation in the Building Envelope, Building and Environment, 118, 174-183, 2017. Biswas, K., Shrestha, S. S., Bhandari, M. S., Desjarlais, A. O., Insulation Materials for Commercial Buildings in North America: An Assessment of Lifetime Energy and Environmental Impacts, Energy and Buildings, 112, 256-269, 2016. Yılmaz, Y., Oral, G. K., An Approach for an Educational Building Stock Energy Retrofits Through Life-Cycle Cost Optimization, Architectural Science Review, 2018, doi:10.1080/00038628.2018.1447438. Tubelo, R., Rodrigues, L., Gillott, M., Soares, J. C. G., Cost-Effective Envelope Optimization for Social Housings in Brazil’s Moderate Climates Zones, Building and Environment 133, 213-227, 2018. Mangan, S. D., Oral, G. K., Assessment of Residential Building Performances for the Different Climate Zones of Turkey in Terms of Life Cycle Energy and Cost Efficiency, Energy and Buildings 110, 362-376, 2016. Bina Enerji Performansı Hesaplama Yöntemi, IV-Referans Bina Belirleme Yöntemi, Resmi Gazete No: 27075, 2008. CEN [European Committee for Standardization], Energy Performance of Buildings-Economic Evaluation Procedure for Energy Systems in Buildings, Standard EN 15459:2007, Brussels: CEN; 2007. http://www.greenspec.co.uk/building-design/embodied-energy/. Harris, R., Introduction to Decision Making, Virtual Salt. http://www.virtualsalt.com/crebook5.htm, 1998. Wang W, Zmeureanu R, Rivard H., Applying Multi-Objective Genetic Algorithms iin Green Building Design Optimization, Building and Environment, 40:1512–25, 2005.