Alternatif Teknolojiler ve Yenilenebilir Enerji Kaynaklarının Müstakil Bir Konutta Kullanımının Tekno-Ekonomik Analizi

Bu çalışmada, ESP-r bina enerji simülasyon yazılımı kullanılarak Ankara’da bulunan iki katlı müstakil bir konutun ısıtma amaçlı saatlik enerji tüketim modeli oluşturulmuştur. Toplam ısınma alanı 500 m2 olan bu konutta ısınma, yemek pişirme ve su ısıtma işlemleri için doğal gaz kullanılmaktadır. Konutun saatlik elektrik ve günlük doğal gaz tüketimleri bir yıl süresince izlenmiştir. Saatlik ısıtma modeli iklim verisi, binanın dış cephe yapı bileşenleri ve ısı kazanç verileri kullanılarak oluşturulmuştur. Konutun enerji talebi ve buna bağlı salım miktarı belirlendikten sonra konutun enerji ve sera gazı salım sınıfları da belirlenmiştir. Konutun fiziksel yapısında iyileştirme ve yenilenebilir enerji kaynaklarının kullanılmasını öngören çeşitli senaryolar modele uygulanmıştır. Yenilenebilir enerji senaryoları olarak fotovoltaik panellerin kullanılması, ısıtma için toprak kaynaklı ısı pompası kullanılması ve sıcak su üretimi için güneş enerjisi kullanılması durumları modellenmiştir. Konutun fiziksel yapısında iyileştirmelerin öngörüldüğü senaryolarda ise duvar ve çatı izolasyonun iyileştirilmesi ve farklı tipte pencere camlarının kullanılmasına dayalı senaryolar modele uygulanmıştır. Daha sonra yıllık enerji talebinde, CO2 salınımında ve yakıt harcamasındaki tasarruflar hesaplanmıştır. Her senaryo için geri ödeme süreleri hesaplanarak Ankara ikliminde bulunan müstakil bir konut için en uygun koşullar tespit edilmiştir. Daha sonra Ankara iklimine en uygun enerji tasarruf yöntemlerinin Ankara’da bulunan müstakil konutlara uygulanması durumunda elde edilecek enerji tasarrufu ve CO2 salımındaki azalmalar hesaplanmıştır.

Techno-Economic Analysis of Using Alternative Technologies and Renewable Energy Sources at a Single Detached Home

In this study, hourly energy consumption model for the heating of a single detached two-storey building in Ankara is established using ESP-r building energy simulation software. In this house, the total heating area of which is 500 m2, natural gas is used for heating, cooking and water heating. The hourly electricity and daily natural gas consumption of the house was monitored during one year. The hourly heating model was created by using climate data, building exterior components and heat gain data. Energy and emission classes of the house have been determined after the energy demand of the house and the amount of emission related to it has been determined. Various scenarios have been applied to the model that suppose to improve the physical structure of the site and to use renewable energy resources. The use of photovoltaic panels, the use of ground source heat pump for heating, and the use of solar energy for hot water production are modelled as renewable energy scenarios. Scenarios based on the improvement of wall and roof insulation and the use of different types of window glass have been applied in scenarios where improvements in the physical structure of the house are supposed. Later, savings on annual energy demand, emissions and fuel consumption were calculated. Payback periods for each scenario are calculated and the most favorable conditions for a single detached house in Ankara climate have been determined. Then energy savings and reductions in CO2 emissions are calculated if the most suitable energy saving methods for the Ankara climate are applied to all single detached houses in Ankara.

___

  • [1] USDOE, Chapter 2: Residential Sector, 2010, http:// buildingsdatabook.eren.doe.gov/Chapterlntro2. aspx., Erişim Tarihi: 11.6.2015.
  • [2] ETKB, Enerji ve Tabii Kaynaklar Bakanlığı, 2010, http://www.enerji.gov.tr/EKLENTI_VIEW/index. php/raporlar/raporVeriGir/61543/2, Erişim Tarihi: 01.01.2012.
  • [3] DEK-TMK, Türkiye Enerji Denge Tabloları, 2015, http://www.dektmk.org.tr/incele.php?id=MTAw#., Erişim Tarihi: 01.01.2012.
  • [4] TÜİK, TÜİK Bölgesel İstatistikler, 2015, http://tuikapp.tuik.gov.tr/Bolgesel/menuAction.do, Erişim Tarihi: 7.6.2012.
  • [5] HÜÇMB, Weather at Beytepe - Ankara, 2014, Erişim Tarihi: 01.01.2014, http://www.metstation. hacettepe.edu.tr/.
  • [6] ESRU, 2014, http://www.esru.strath.ac.uk/Programs/ESP-r.htm., Erişim Tarihi: 01.03.2013.
  • [7] Eski̇, N. ve Türkmen, H., “Analysis of Annual Heating and Cooling Energy Requirements for Office Buildings in Different Climates in Turkey”, Energy and Buildings, 40, p. 763-773, 2008.
  • [8] Dombayci, Ö. A. “The Prediction of Heating Energy Consumption in a Model House by Using Artificial Neural Networks in Denizli-Turkey”, Advances in Engineering Software, 41, 2, p. 141-147, 2010.
  • [9] Yaşar, Y. ve Kalfa, S. M., “The Effects of Window Alternatives on Energy Efficiency and Building Economy in High-Rise Residential Buildings in Moderate to Humid Climates”, Energy Conversion and Management, 64, p. 170-181, 2012.
  • [10] Chow, T. ve Chan, A., “Numerical Study Of Desirable Solar-Collector Orientations for the Coastal Region of South China”, Applied Energy, 79, pp. 249-260, 2004.
  • [11] T. Chow, J. Hand ve P. Strachan, “Building-Integrated Photovoltaic and Thermal Applications in a Subtropical Hotel Building”, Applied Thermal Engineering, 23, p. 2035-2049, 2003.
  • [12] J. H. Yoon, J. Song ve S. J. Lee, “Practical Application of Building Integrated Photovoltaic (BIPV) System Using Transparent Amorphous Silicon Thin-Film PV Module”, Solar Energy, 85, 5, p. 723733, 2011.
  • [13] D. Thevenard, “Review and Recommendations for Improving the Modelling of Building Integrated Photovoltaic Systems”, Ninth International IBPSA Conference, p. 1221-1228, Montreal, 2005.
  • [14] Eke, R. ve Senturk, A., “Monitoring the Performance of Single and Triple Junction Amorphous Silicon Modules in Two Building Integrated Photovoltaic (BIPV) Installations”, Applied Energy, 109, p. 154-162, 2013.
  • [15] Didone, E. L. ve Wagner, A., “Semi-Transparent PV Windows: A Study for Office Buildings in Brazil”, Energy and Buildings, 67, p. 136-142, 2013.
  • [16] Lee, J. W., Park, J. ve Jung, H. J., “A Feasibility Study on a Building’s Window System Based on Dye-Sensitized Solar Cells”, Energy and Buildings, 81, p. 38-47, 2014.
  • [17] Huang Q., Shi Y., Wang Y., Lu L. ve Cui Y., “Multi-Turbine Wind-Solar Hybrid System”, Renewable Energy, 76, pp. 401-407, 2015.
  • [18] C. Maurer ve T. E. Kuhn, “Variable G Value Of Transparent Facade Collectors”, Energy and Buildings, 51, p. 177-184, 2012.
  • [19] B. K. Koyunbaba, Z. Yilmaz ve K. Ulgen, “An Approach for Energy Modeling of a Building Integrated Photovoltaic (BIPV) Trombe Wall System”, Energy and Buildings, 67, p. 680-688, 2013.
  • [20] A. Karkare, A. Dhariwal, S. Puradbhat ve M. Jai̇, “Evaluating Retrofit Strategies for Greening Existing Buildings by Energy Modelling & Data Analytics”, Intelligent Green Building and Smart Grid (IGBSG), Taipei, Taiwan, 2014.
  • [21] Good, J. T., Ugursal, V. I. ve Fung, A. S., “Modeling and Technical Feasibility Analysis of a Low-Emission Residential Energy System”, International Journal of Green Energy, 4, pp. 27-43, 2007.
  • [22] A. M. Syed, A. S. Fung, V. I. Ugursal ve H. Taherian, “Analysis of PV/Wind Potential in the Canadian Residential Sector Through High-Resolution Building Energy Simulation”, International Journal Of Energy Research, 33, 4, p. 342-357, 2009.
  • [23] Nikoofard, S., Ugursal, V. I. ve Beausoleil-Morrison, I., “An Investigation of the Technoeconomic Feasibility of Solar Domestic Hot Water Heating for the Canadian Housing Stock”, Solar Energy, 101, pp. 308-320, 2014.
  • [24] Esen, H., Inalli, M., Sengur, A. ve Esen, M., “Performance Prediction Of A Ground- Coupled Heat Pump System Using Artificial Neural Networks”, Expert Systems with Applications, 35, 4, p. 1940- 1948, 2008.
  • [25] Uçar, A. ve Inalli, M., “Exergoeconomic Analysis and Optimization of a Solar-Assisted Heating System for Residential Buildings”, Building and Environment, 41, 11, p. 1551-1556, 2005.
  • [26] Hepbaşli, A. ve Balta, M. T., “A Study On Modeling and Performance Assessment of a Heat Pump System for Utilizing Low Temperature Geothermal Resources In Buildings”, Building and Environment, 42, 10, p. 3747-3756, 2007.
  • [27] Eki̇c, B. B. ve Aksoy, U. T., “Prediction of Building Energy Needs in Early Stage of Design by Using ANFIS”, Expert Systems with Applications, 38, 5, p. 5352-5358, 2011.
  • [28] Koroneos, C. ve Kottas, G., “Energy Consumption Modeling Analysis and Environmental Impact Assessment of Model House in Thessaloniki-Greece”, Building and Environment, 42, 1, P. 122-138, 2007.
  • [29] Yildiz, Y. ve Arsan, Z. D., “Identification of the Building Parameters that Influence Heating and Cooling Energy Loads for Apartment Buildings in Hot-Humid Climates”, Energy, 36, 7, pp. 42874296,2011.
  • [30] Parker, D. S., Huang, Y. J., Konopacki, S. J., Gartland, L. M., Sherwin, J. R„ and Gu, L. “Measured and Simulated Performance of Reflective Roofing Systems in Residential Buildings”, Florida Solar Energy Center, Florida, 1998. (http://www. fsec.ucf.edu/en/publications/html/fsec-pf-331-98/)
  • [31] Florides, G., Kalogirou, S., Tassou, S. ve Wrobel, L., “Modeling of the Modern Houses of Cyprus and Energy Consumption Analysis”, Energy, 25, 10, p. 915-937, 2000.
  • [32] Dias, D., Machado, J., Leal, V. ve Mendes, A., “Impact of Using Cool Paints On Energy Demand and Thermal Comfort of A Residential Building”, Applied Thermal Engineering, 65, 1-2, pp. 273281, 2014.
  • [33] Sailor, D., “A Green Roof Model For Building Energy Simulation Programs”, Energy and Buildings, 40, p. 1466-1478, 2008.
  • [34] Hoseggena, R., Wachenfeldt, B. ve Hanssen, S., “Building Simulation as an Assisting Tool in Decision Making: Case Study: With or Without a Double-Skin Façade?”, Energy and Buildings, 40, 5, p. 821-827, 2008.
  • [35] Friess, W. A., Rakhshan, K., Hendawi, T. A. ve Tajerzadeh, S., “Wall Insulation Measures for Residential Villas in Dubai: A Case Study in Energy Efficiency”, Energy and Buildings, 44, p. 26-32, 2012.
  • [36] Sozer, H., “Improving Energy Efficiency Through the Design of the Building Envelope”, Building and Environment, 45, p. 2581-2593, 2010.
  • [37] Appelfeld, D., Mcneil, A. ve Svendsen, S., “An Hourly Based Performance Comparison of An Integrated Micro-Structural Perforated Shading Screen With Standard Shading Systems”, Energy and Buildings, 50, p. 166-176, 2012.
  • [38] MGM, 2013 İklim Verisi, 2013, http://www.mgm. gov.tr/, Erişim Tarihi: 01.01.2014.
  • [39] USDOE, Energyplus Energy Simulation Software - Weather Data Sources, 2014, http://apps1 .eere.energy.gov/buildings/energyplus/weatherdata_sources.cfm#iwec, Erişim Tarihi: 09.04.2015.
  • [40] Mikrodizayn, 2014, http://mikrodizayn.com.tr/, Erişim Tarihi:17.01.2014.
  • [41] Izocam Fiyat Listesi, 2014, http://www.inceten. com/wp-content/uploads/2014/08/izocam_fiyat_ listesi.pdf, Erişim Tarihi: 17.01.2014.
  • [42] TEDAS, Elektrik Tarifeleri, 2014, http://www.tedas.gov.tr/bilgibankasi/sayfalar/elektriktarifeleri. aspx, Erişim Tarihi: 07.01.2014.
  • [43] Başkent Doğal Gaz, 2014, http://www.baskentdogalgaz.com.tr/inc/main.asp?id=tarifearsiv, Erişim Tarihi: 20.01.2014.
  • [44] Başkent Doğal Gaz - Online İşlemler, 2015, https:// www.baskentdogalgaz.com.tr/dogalgazfiyatyeni. aspx., Erişim Tarihi: 01.05.2015.
  • [45] YEGM - Mevzuat, 2015, http://www.eie.gov.tr/verimlilik /v_mevzuat.aspx., Erişim Tarihi: 10.05.2015.
  • [46] Bulut, H., Büyükalaca, O. ve Yilmaz, T., Türkiye Için Isıtma ve Soğutma Derece-Gün Bölgeleri, 16. Ulusal Isı Bilimi ve Tekniği Kongresi, Kayseri, 2007.
  • [47] Kaya, M. ve Ceylan, İ., Güneş Radyasyonu Düşük Olan Bölgelerde Isı Pompası Sistemi ile Kullanma Sıcak Suyu Hazırlanması, Teknoloji, 7, 2, pp. 251- 257, 2004.
  • [48] EPDK, Doğal Gaz Piyasası Sektör Raporu-2013, 2013, www.epdk.org.tr/tr/dokuman/2501, Erişim Tarihi: 10.05.2014.
  • [49] NetGreen, Water Consumption, Profile Over 24 Hours, http://www.netgreensolar.com/netgreen_heat_promo/body/images/costs_savings/profiles/hw_24hr_profile.PNG, 19.6.2015.
  • [50] J. L. Bernal-Agustín ve R. Dufo-López, Economical and Environmental Analysis of Grid Connected Photovoltaic Systems in Spain, Renewable Energy, pp. 1107–1128, 2006.