Modifiye Grafit Köpük İle Hava Arasındaki Ortalama Hacimsel Isı Taşınım Katsayısının Tayini

Bu çalışmada, zamana bağlı tek akım yöntemi vasıtasıyla akış yönünde 2 mm çapında kanalların açıldığı modifiye grafit köpük malzeme ile hava arasındaki ortalamahacimsel ısı taşınım katsayısı, Reynolds sayısının (Re) ve malzeme uzunluğu/genişliği oranının (L/W) fonksiyonu olarak formunda ampirik bir korelasyon denklemiile ifade edilmiştir. Modifiye grafit malzemenin yüksekliği (H), genişliği (W) ve gözeneklilik değeri (ε) sırasıyla 27 mm, 52 mm ve 0.113 olup akışın tamamen kanallariçerisinden gerçekleştiği varsayılmıştır. Zamana bağlı tek akım yöntemi hem deneysel hem de teorik çalışma içermektedir. Deneysel çalışma geniş bir Reynolds sayısıaralığında (1000-10000) ve 3 farklı malzeme uzunluğu/genişliği değerinde (0,52, 1,1,46) yapılmış olup teorik çalışma ise deneylerin ardından elde edilen veriler çerçevesinde MatLab ortamında geliştirilen bilgisayar simülasyon programı vasıtasıylayürütülmüştür.

Determination of Average Volmetric Heat Transfer Coefficient Between Modified Graphite Foam and the Air

In this study, the relation which gives the volumetric heat transfer coefficient between the modified graphite foam material and the air is expressed as a function of Re number Material length / width (L/W) ratio with the empirical correlation equation in the form of using transient single blow technique. The graphite foam is modified by machining 2 mm cylindrical air passages in the axial direction. The height (H), width (W) and porosity (ε) of the modified graphite material are 27 mm, 52 mm and 0,113 respectively and it is assumed that the flow is entirely carried out through the air passages. Transient single blow technique includes both experimental and theoretical work. The experimental study is carried out for a wide range of Re number (1000-10000) and 3 different material length / width value and then, theoretical study based on the data obtained in the experiments is conducted by means of a computer simulation program developed in the MatLab environment.

___

  • 1. Jeng, T.M., Tzeng, S.C., Hung, Y.H. 2006. “An analytical study of local thermal equilibrium in porous heat sinks using fin theory”, International Journal of Heat and Mass Transfer, 49, 1907-1914.
  • 2. Gallego, N.C., Klett, J.W. 2003. “Carbon foams for thermal management”, Carbon, 41, 1461- 1466.
  • 3. Dukhan, N., Chen, K.C. 2007. “Heat transfer measurements in metal foam subjected to constant heat flux”, Experimental Thermal and Fluid Science, 32, 624-631.
  • 4. Jeng,T.M., Tzeng, S.C. 2005. “Numerical study of confined slot jet impinging on porous metallic foam heat sink”, International Journal of Heat and Mass Transfer, 48, 4685-4694.
  • 5. Ejlali A., Ejlali, A., Hooman, K., Gurgenci, H. 2009. “Application of high porosity metal foams as air-cooled heat exchangers to high heat load removal systems”, International Communications in Heat and Mass Transfer, 36, 674-679.
  • 6. Leong, K.C., Jin, L.W. 2006. “Effect of oscillatory frequency on heat transfer in metal foam heat sinks of various pore densities”, International Journal of Heat and Mass Transfer, 49, 671-681.
  • 7. Kurtbas, I., Celik, N. 2009. “Experimental investigation of forced and mixed convection heat transfer in a foam-filled horizontal rectangular channel”, International Journal of Heat and Mass Transfer, 52, 1313-1325.
  • 8. Mahjoob,S., Vafai, K. 2008. “A synthesis of fluid and thermal transport models for metal foam heat exchangers”, International Journal of Heat and Mass Transfer, 51, 3701-3711.
  • 9. Leong, K., Li, H., Jin, L. and Chai, J. 2010. “Numerical and experimental study of forced convection in graphite foams of different configurations”, Applied Thermal Engineering, 30(5), 520-532.
  • 10. Lin, W., Sundén, B., Yuan, J. 2013. “A performance analysis of porous graphite foam heat exchangers in vehicles”, Applied Thermal Engineering, 50,1201-1210.
  • 11. Garrity, P., Klausner, J. and Mei, R. 2010. “Performance of Aluminum and Carbon Foams for Air Side Heat Transfer Augmentation”, Journal of Heat Transfer, 132(12), 121901.
  • 12. Fu, X., Viskanta, R., Gore, J.P. 1998. “Measurement and correlation of volumetric heat transfer coefficients of cellular ceramics”, Experimental Thermal and Fluid Science, 17, 285-293.
  • 13. Hwang, J.J., Hwang, G.J., Yeh, R.H., Chao, C.H. 2002. “Measurment of interstitial convective heat transfer and frictional drag for flow across metal foams”, Journal of Heat Transfer, 124, 120-129.
  • 14. Ando, K., Hirai, H., Sano, Y. 2013. “An accurate experimental determination of interstitial heat transfer coefficients of ceramic foams using the single blow method”, The Open Transport Phenomena Journal, 5, 7-12.
  • 15. Poco Graphite Inc. “POCOFoam@ Material Properties”. http://www.poco.com/portals/0/ literature/semiconductor/78962v2pocofoamflyer.pdf, Son erişim tarihi:04 Temmuz 2015.
  • 16. Solmuş, İ. 2015. “Numerical investigation of heat transfer and fluid flow behaviors of a block type graphite foam heat sink inserted in a rectangular channel ”, Applied Thermal Engineering, 78, 605-615.
  • 17. Xu, H., Gong, L., Huang, S., Xu, M. 2014. “Non-equilibrium heat transfer in metal-foam solar collector with no-slip boundary condition”, International Journal of Heat and Mass Transfer, 76, 357-365.
  • 18. Feng, S.S., Kuang, J.J., Wen, T., Lu, T.J., Ichimiya, K. 2014. “An experimental and numerical study of finned metal foam heat sinks under impinging air jet cooling”, International Journal of Heat and Mass Transfer, 77, 1063- 1074.
  • 19. Lua, W., Zhao, C.Y., Tassou, S.A. 2006. “Thermal analysis on metal-foam filled heat exchangers. Part I: Metal-foam filled pipes”, International Journal of Heat and Mass Transfer, 49, 2751-2761.
  • 20. Yang, Y.T., Hwang, M.L. 2009. “Numerical simulation of turbulent fluid flow and heat transfer characteristics in heat exchangers fitted with porous media”, International Journal of Heat and Mass Transfer, 52, 2956-2965.
  • 21. Calmidi, V.V., Mahajan, R.L. 2000. “Forced convection in high porosity metal foams”, ASME Journal of Heat Transfer, 122 (3), 557- 565.