Evaporatif Hava Soğutma Sistemlerinin Enerji, Ekserji, Termoekolojik ve Sürdürülebilirlik Analizleri

Bu çalışmada, evaporatif hava soğutma sistemleri ele alınmıştır. Direkt, endirektve Maisotsenko çevrimli evaporatif hava soğutma sistemleri açıklanmış ve evaporatif hava soğutma sistemlerinin enerji, ekserji, sürdürülebilirlik ve termoekolojikanalizleri sunulmuştur. 35 °C çevre sıcaklığında Maisotsenko çevrimli bir havasoğutma sistemi enerjetik ve ekserjetik açılardan incelenmiştir. Enerji analizindesistemin ıslak termometre etkinliği, soğutma kapasitesi ve performans katsayısı(COP) bulunmuştur. Diğer yandan, ekserji analizinde sistemdeki kuru havanın vesuyun ekserji girişi akımları, ekserji çıkış akımı, ekserji kayıp akımı, ekserji yıkımıakımı, faydalı çıkış ekserjisi akımı, ekserjetik performans katsayısı (COPex) ve ekserji verimi belirlenmiştir. Sistemin ekserjetik performans katsayısı (COPex) değeri0,08 olarak bulunurken, enerjetik performans katsayısı (COP) 8,43 olarak bulunmuştur. Sistemin sürdürülebilirlik indeksi değeri 1,33 olarak bulunurken, sisteminekserji verimi de %25 olarak belirlenmiştir. Ayrıca, sistemin toplam entropi üretimi 5,19x10-4 kW/K olarak hesaplanırken, sistemin ekolojik performans katsayısı da0,375 olarak bulunmuştur.

Energy, Exergy, Thermoecologic and Sustainability Analyses of Evaporative Air Cooling Systems

In this study, evaporative air cooling systems are taken into account. The direct, indirect and Maisotsenko cycle evaporative air cooling systems are explained and energy, exergy, sustainability and thermoecologic analyses of the evaporative air cooling systems are illustrated. A case study of Maisotsenko cycle based air cooling system is examined under the energetic and exergetic perspectives, while the environment temperature is 35 °C. The wet bulb effectiveness, cooling capacity and energetic coefficient of performance (COP) of the system are found in the energy analysis. On the other hand, the exergy input rates of dry air and water, exergy output rate, exergy loss rate, exergy destruction rate, useful output exergy rate, exergetic COP (COPex) and exergy efficiency of the system are determined in the exergy analysis. It is found that the energetic COP of the system is 8,43, while the exergetic COP (COPex) rate is 0,08. The exergy efficiency of the system is determined to be 25%, while the sustainability index rate of the system is found as 1,33. Furthermore, the ecologic performance coefficient of the system is found to be 0,375, while the total entropy generation rate of the system is computed as 5,19x10-4 kW/K.

___

  • [1] Caliskan, H., Hong, H., Energy and Exergy Analyses of HVAC Systems, 2017 SAREK Annual Conference, Güney Kore, 2017.
  • [2] Abut, N., Çakır, B., Üzeyir, A., Bozkurt, A., Nuri, E., 2000’li Yıllarda Ulusal Arz-Talep Dengesi Işığında Türkiye Enerji Politikaları, Dünya Enerji Konseyi Türk Milli Komitesi, Türkiye 7. Enerji Kongresi, Orta Doğu Teknik Üniversitesi Kültür ve Kongre Merkezi, Ankara, Türkiye, 1, 31-40, 3-8 Kasım 1997.
  • [3] ASHRAE, Ventilation and Infiltration Chapter, Fundamentals Volume of the ASHRAE Handbook, Inc., Atlanta, ABD, 2005.
  • [4] Femoran, The Benefits of Energy Efficient HVAC, http://www.femoran.com/site/ files/1162/142935/473588/694624/Energy_Efficient_HVAC_Final_3.10.14_.pdf, 2017.
  • [5] Kenneth, W. J. R., Advanced Thermodynamics For Engineers, McGrow-Hill, New York, USA, 1995.
  • [6] Chengqin, R., Nianping, L., Guangfa, T., Principles of Exergy Analysis in HVAC and Evaluation of Evaporative Cooling Schemes, Building and Environment, 37, 1045-1055, 2002.
  • [7] Kazanci, O. B., Shukuya, M., Olesen, B. W., Energy and Exergy Analyses of the Benefits and Limitations of Air-to-Air Heat Recovery, 9th International Conference on Indoor Air Quality Ventilation & Energy Conservation In Buildings, Songdo, Güney Kore, 2016.
  • [8] Dincer, I., Rosen, M. A., Exergy, Energy, Environment and Sustainable Development, Elsevier Science, London, 2007.
  • [9] Moran M. J., Shapiro H. N., Fundamentals of Engineering Thermodynamics. John Wiley & Sons, ABD, 1998.
  • [10] Angelotti, A., Caputo, P., Energy and Exergy Analysis of Heating and Cooling Systems in the Italian Context, IRIS Politecnico di Milano, İtalya, 2007.
  • [11] Fang, X., Jin, X., Fan, B., Zhu, Y., The Evaluation Method of HVAC System’s Operation Performance Based on Energy Flow Analysis and DEA, International Refrigeration and Air Conditioning Conference, ABD, 2014.
  • [12] Quaro,https://www.quora.com/ What-is-the-difference-between-direct-and-indirect-evaporative-cooling, 2017.
  • [13] Caliskan, H., Dincer, I., Hepbasli, A., A Comparative Study on Energetic, Exergetic and Environmental Performance Assessments of Novel M-Cycle Based Air Coolers For Buildings, Energy Conversion and Management, 56, 69–79, 2012.
  • [14] Maisotsenko, V., M-Cycle, http://www.rexresearch.com/maisotsenko/maisotsenko.htm, 2020.
  • [15] Peace Software, https://www.peacesoftware. de/einigewerte/calc_luft.php7, 2017.
  • [16] Caliskan, H., Dincer, I., Hepbasli, A., Exergetic and Sustainability Performance Comparison of Novel and Conventional Air Cooling Systems For Building Applications, Energy and Buildings, 43, 1461–1472, 2011.
  • [17] Ust, Y., Sahin, B., Kodal, A., Akcat, I. H., Ecological Coefficient of Performance Analysis and Optimization of an Irreversible Regenerative-Brayton Heat, Applied Energy, 83, 558– 572, 2006.