Bir Ameliyathanede Hava Değişim Katsayısının Partikül Dağılımı Üzerine Etkisi

Cerrahi alan enfeksiyonları (CAE) cerrahinin önemli problemlerindendir. Ameliyathanelerde, havadaki patojen partikül sayısı ile CAE gelişme riski doğrudan ilişkilidir. Ameliyathane havalandırmasına ait hava değişim katsayısı (HDK), kirletici dağılımını etkileyen önemli faktörlerden biridir. Bu çalışmada, laminer hava akış sistemine sahip bir ameliyathanede ameliyat masası üzerine düşen partikül sayısı ve partikül dağılımı, farklı hava değişim katsayısı değerleri için hesaplamalı akışkanlar dinamiği (HAD) kullanılarak incelenmiştir. Çalışmada üç farklı HDK değeri (20, 30 ve 40) ve üç farklı partikül çapı (10, 15 ve 20 µm) dikkate alınmıştır. Ameliyat masası üzerine düşen partikül miktarının, partikül çapının azalması ve HDK değerinin artması ile azaldığı belirlenmiştir.

Effect of Air Change Rate on Particle Distribution in an Operating Room

Surgical site infections (SSI) are important problems of surgery. There is a direct correlation between risk of developing surgical site infection and number of pathogen particles in operating room air. Air change rate (ACH) for operating room ventilation is one of the important factors affecting the distribution of pollutants in the environment. in this study, particle distribution and number of particle deposition on the operating table in an operating room with laminar air flow system is investigated using computational fluid dynamics for different ACH values. in the study, three different ACH values (20, 30 and 40) and three different particle diameters (10, 15 and 20 µm) are taken into consideration. It is obtained that the amount of particles deposited on the operating table decrease with decreasing particle diameter and increasing of ACH value.

___

  • KAYNAKLAR Chow, T. T., Yang, X. Y., “Ventilation Performance in the Operating Theatre Aganist Airborne Infection: Numerical Study on an Ultra-Clean System”, Journal of Hospital Infection, 59: 138-174, 2005. Sadrizadeh, S., Holmberg, S., “Surgical Clothing Systems in Laminar Airflow Operating Room: A Numerical Assessment”, Journal of Infection and Public Health, 7: 508-516, 2014. Sadrizadeh, S., “Design of Hospital Operating Room Ventilation Using Computational Fluid Dynamics”, PhD Thesis, 2016. Sadrizadeh, S., Holmberg, S., “Comparison of Different Ventilation Principles in an Operating Suite”, Proc. 13th Scanvac Int. Conf. Air Distrib. Rooms, 2014. Alsved, M., Civilis, A., Ekolind, P., Tammelin, A., Andersson, A. E., vd. “Temperature-Controlled Airflow Ventilation in Operating Rooms Compared with Laminar Airflow and Turbulent Mixed Airflow”, Journal of Hospital Infection, 98:181-190, 2018. Wang, C., Holmberg, S., Sadrizadeh, S., “Numerical Study of Temperature-Controlled Airflow in Comparison with Turbulent Mixing and Laminar Airflow for Operating Room Ventilation”, Building and Environment, DOI: 10.1016/j.buildenv.2018.08.010, 2018. Sadrizadeh, S., Holmberg, S., Tammelin, A., “A Numerical Investigation of Vertical and Horizontal Laminar Airflow Ventilation in an Operating Room”, Building and Environment, 82:517-525, 2014. Memarzadeh, F., Manning, A., “Comparison of Operating Room Ventilation Systems in the Protection of the Surgical Site”, ASHRAE Transactions, 108(2), 3-15, 2002. Al-Waked, R., “Effect of Ventilation Strategies on Infection Control Inside Operating Theatres”, Engineering Applications of Computational Fluid Mechanics, 4:1, 1-16, 2014. Rui, Z., Guangbei, T., Jihong, L., “Study on Biological Contaminant Control Strategies Under Different Ventilation Models in Hospital Operating Room”, Building and Environment, 43: 793-803, 2008. Srebric, J., Vukovic, V., Guoqing, H., Yang, X., “CFD Boundary Conditions for Contaminant Dispersion, Heat Transfer and Airflow Simulations Around Human Occupants in Indoor Environments”, Building and Environment, 43: 294-303, 2008. ANSYS Fluent 15.0 User’s Guide, Ansys Inc., 2013. Morsi, S. A., Alexander, A. J., “An Investigation of Particle Trajectories in Two-Phase Flow Systems”, Journal of Fluid Mechanics, 55(02), 193-208, 1972. Chen, F., Yu, S. C. M., Lai, A. C. K., “Modeling Particle Distribution and Deposition in Indoor Environments with a New Drift-Flux Model”, Atmospheric Environment, 40:357-367, 2006. ISO 7730:2005, “Ergonomics of the Thermal Environment – Analytical Determination and Interpretation of Thermal Comfort Using Calculation of the PMV and PPD Indices and Local Thermal Comfort Criteria”, International Organization for Standardization, 2005.