Bina Enerji Kullanımının Bir Boyutlu Dinamik Isıl Modellenmesi ve Örneklere Uygulanması

Bu çalışmada, ısı kaybı ve kazancının sadece pencere ve dış duvardan olduğu varsayılan bir odanın ısıl modeli çıkartılmıştır. Paralel bağlı levhalar için bir boyutlu zamana bağlı ısı iletimi dinamik modeli sunulmuş ve denklemler sonlu farklar yöntemi kullanılarak ayrıklaştırılmıştır. Yapılan çözümlerin doğruluğunun ispatı analitik yöntemle elde edilen sürekli rejim sonuçlarıyla tamamlanmıştır. Seçilen çeşitli uygulama problemleri sürekli rejim problemlerinin analitik çözümleri ile karşılaştırılarak ve gittikçe daha karmaşık problemler seçilerek çözülmüştür. Detaylı formülasyon çıkarılmış örneklerle anlatılmıştır. Çalışmanın amacı binaların ısıl enerji TS EN ISO 13790 Standardı'na göre yapılan uygulama çözümlerini kontrol etmek amacıyla kullanılacak basit bir dinamik ısı kaybı modeli geliştirmek ve standardın daha karmaşık uygulamaları için daha esnek bir referans ısıl model geliştirmektir. Bu nedenle kullanıcının daha karmaşık sayısal/ticari kodları doğru kullanıp kullanmadığını sınayabilmesine imkan sağlamak hedeflendiği için sayısal sonuçlar verilmiştir. Bu çalışmada önerilen yöntemlere göre bulunan çözümler bina enerji tüketimi hesapları yapılırken referans olarak alınabilir. Ayrıca, bu çözümleme yöntemi daha esnek bir ısıl model için temel oluşturabilir. Bu çalışmada raporlanan yöntemler kullanıcının daha karmaşık sayısal/ticari kodları doğru kullanıp kullanmadığını sınayabilmesine imkân sağlar.

One-Dimensional Dynamic Thermal Modeling of Building Energy Demand and Application to Examples

In this study, a thermal model of a room is formulated where the heat loss and the gain are assumed to be only from the window and the outer wall. A one-dimensional time-dependent dynamical model of heat transfer for parallel bonded layers is presented and the equations are discretized using the finite difference method. Proof of accuracy of the steady state solution is completed with results obtained by the analytical method. Various practical problems selected by comparison to analytical solutions of steady state and solved the problem by making the increasingly complex. The detailed formulation is described with examples. The aim of this study is to develop a simple dynamic building thermal energy balance and heat loss model that will be used to confirm application solutions made according to the TS EN ISO 13790 Standard. And the aim is also to develop a more flexible reference thermal model for more complex applications of the standard. For this reason numerical results are given as it is aimed to enable the user to check whether he has used more complex numerical / commercial codes correctly. The solutions found according to the methods proposed in this study can be taken as reference when building energy consumption calculations are made. In addition, this analysis method can be the basis for a more flexible thermal model. The methods reported here allow the user to test whether they are using the more complex digital / commercial codes correctly.

___

  • Twidell, J. and Weir, T., Renewable Energy Resources, Routledge, 2015.
  • Csáky, I. and F. Kalmár, Effects of Solar Radiation Asymmetry on Buildings’ Cooling Energy Needs, Journal of Building Physics, 40(1): p. 35-54, 2015.
  • Oliveira Panão, M. J. N., et al., Validation of a Lumped RC Model for Thermal Simulation of a Double Skin Natural and Mechanical Ventilated Test Cell, Energy and Buildings, 121: p. 92-103, 2016.
  • Hitchin, R., Monthly Utilisation Factors for Building Energy Calculations, Building Services Engineering Research and Technology, 2016. 38(3): p. 318-326.
  • Beckman, W. A., et al., TRNSYS The Most Complete Solar Energy System Modeling and Simulation Software, Renewable Energy, 5(14): p. 486-488, 1994.
  • Bruno, R., G. Pizzuti, and N. Arcuri, The Prediction of Thermal Loads in Building by Means of the EN ISO 13790 Dynamic Model: A Comparison with TRNSYS, Energy Procedia, 101: p. 192-199, 2016.
  • Hitchin, R., Monthly Air-Conditioning Energy Demand Calculations for Building Energy Performance Rating, Building Services Engineering Research and Technology, 37(3): p. 298-315, 2015.
  • Kwak, H. J., J. H. Jo, and S. J. Suh, Evaluation of the Reference Numerical Parameters of the Monthly Method in ISO 13790 Considering S/V Ratio. Sustainability, 7(1): p. 767, 2015.
  • Crawley, D. B., et al., EnergyPlus: Creating a New-Generation Building Energy Simulation Program, Energy and Buildings, 33(4): p. 319331, 2001.
  • Michalak, P., The Development and Validation of the Linear Time Varying Simulink-Based Model for the Dynamic Simulation of the Thermal Performance of Buildings, Energy and Buildings, 141: p. 333-340, 2017.
  • MathWorks, I., MATLAB: The Language of Technical Computing, Desktop Tools and Development Environment, Version 7. Vol. 9., MathWorks, 2005.
  • Michalak, P., Corrigendum to “The simple Hourly Method of EN ISO 13790 Standard in Matlab/Simulink: A Comparative Study for the Climatic Conditions of Poland” [Energy 75 (2015) 568–578]. Energy, 88: p. 973, 2015.
  • Capizzi, G., et al., Thermal Transients Simulations of a Building by a Dynamic Model Based on Thermal-Electrical Analogy: Evaluation and Implementation Issue, Applied Energy, 199: p. 323-334, 2017.
  • Bruno, R., G. Oliveti, and N. Arcuri, An Analytical Model for the Evaluation of the Correction Factor FW of Solar Gains Through Glazed Surfaces Defined in EN ISO 13790. Energy and Buildings, 96: p. 1-19, 2015.
  • Horvat, I. and D. Dović, Dynamic Method for Calculating Energy Need in HVAC Systems, Transactions of FAMENA, 40(SI-1): p. 47-62, 2016.
  • Horvat, I. and D. Dović, Dynamic Modeling Approach for Determining Buildings Technical System Energy Performance, Energy Conversion and Management, 125: p. 154-165, 2016.
  • ISO, E., 13790: 2008 Energy Performance of Buildings–Calculation of Energy Use for space Heating and Cooling, International Standard Organisation, 2008.
  • Hastekin, A., E. Kaya, and B. Kobaş, Enerji Kimlik Belgesi için BEP-TR Yazılımı,. Termodinamik Dergisi, Ocak, p. 42-68, 2010. [19] Arpaci, V. S., Conduction Heat Transfer, 1966.
  • Dağsöz, A. K., Isı Geçişi: Isı İletimi. İTÜ İnşaat Fakültesi Matbaası, İstanbul, 1974.
  • Kakaç, S. and Y. Yener, Heat Conduction, Univ. of Miami, Coral Gables, FL., 1985.
  • Bergman, T., et al., Fundamentals of Heat and Mass Transfer, USA: John Wiley & Sons. ISBN, 2015. 13: p. 978-0470, 2011.
  • Santamouris, M., et al., On the Impact of Urban Climate on the Energy Consumption of Buildings, Solar Energy, 70(3): p. 201-216, 2001.
  • Swan, L. G. and V. I. Ugursal, Modeling of End-Use Energy Consumption in the Residential Sector: A Review of Modeling Techniques, Renewable and Sustainable Energy Reviews, 13(8): p. 1819-1835, 2009.
  • Koç, İ., E. Sayar, and İ. C. Parmaksızoğlu, Bina Enerji Tüketiminin Isıl Modellenmesi, 13. Ulusal Tesisat Mühendisliği Kongresi, MMO: İzmir. p. 1989-1999, 2017.
  • Kokogiannakis, G., P. Strachan, and J. Clarke, Comparison of the Simplified Methods of the ISO 13790 Standard and Detailed Modelling Programs in a Regulatory Context, Journal of Building Performance Simulation, 1(4): p. 209219, 2008.
  • Michalak, P., The Simple Hourly Method of EN ISO 13790 Standard in Matlab/Simulink: A Comparative Study for the Climatic Conditions of Poland. Energy, 75: p. 568-578, 2014.
  • Khotanzad, A., et al., An Artificial Neural Network Hourly Temperature Forecaster with Applications in Load Forecasting, IEEE Transactions on Power Systems, 11(2): p. 870876, 1996.