NANOLİF YAPILI POLİMERİK DOKU İSKELELERİ

Doku iskeleleri; üç boyutlu, gözenekli, biyo-bozunur, biyo-uyumlu ve uygun mekanik dayanıma sahip malzemelerdir. Doku iskeleleri, üzerine ekilen kültürlenmiş hücrelerin yapışmasını, çoğalmasını, farklılaşması-nı sağlamaktadırlar. Bu hücreler birleşerek bir doku oluşturmaktadır. Biyopolimerlerden nanolif yapılı doku iskeleleri üretiminde elektrik alan ile lif çekim yöntemi, elde edilen yapının doğal hücre dışı matrise (ECM) benzerliğinden dolayı en çok tercih edilen yöntemlerden biridir. Elektrik alan ile lif çekim sistemi; işlem koşul-larına bağlı olarak nanolif matın yapısal özelliklerinin kolay değiştirilebilmesinden dolayı, doku iskelesi üreti-minde kabul görmektedir. Bu çalışmada, biyo-bozunur malzemeler, doku iskelelerinin genel yapısı, fonksiyonel özellikleri ve üretim yöntemleri hakkında yapılan bir inceleme sunulmuştur. Amacımız; tekstil araştırmacıları-nın, nanolif yapılı doku iskelelerinin tıp alanındaki potansiyel uygulamaları ile ilgili farkındalığı arttırmaktır.

NANOFIBER STRUCTURED POLYMERIC TISSUE SCAFFOLDS

Tissue scaffolds are 3D, porous, biodegradable, and biocompatible materials which have an appropriate mechanical strength. Tissue scaffolds enable attachment, proliferation, and differentiation of seeded cultured cells on them. These cells form a tissue by connecting to each other. Electrospinning is one of the most preferred methods in nanospun tissue scaffold production from biopolymers owing to the resemblance of obtained surface with extracellular matrix (ECM). Electrospinning system have gained acceptance in tissue scaffold production due to the easily changeability of structural properties of nanospun mats with process parameters. In this study, a review about biodegradable materials, general structure of tissue scaffolds, functional properties, and production methods were represented. Our aim was to develop awareness of textile researchers about the potential medical applications of nanospun tissue scaffolds.

___

  • Martina M., Hutmacher D. W., (2007), Biodegradable polymers applied in tissue engineering research: A review , Polymer International, 56, 2, 145–157.
  • Armentano I., Dottori M., Fortunati E., Mattioli S., Kenny J.M., (2010), Biodegradable polymer matrix nanocomposites for tissue engineering: A review , Polymer Degradation and Stability, 95, 11, 2126-2146., Lin T.(Ed.), (2011), Nanofibers - Production, Properties and Functional Applications , Chapter 14., InTech. Open Access Publisher.
  • Zorlutuna P., Annabi N., Unal G. C., Nikkhah M., Cha J. M., Nichol J.W., Manbachi A., Bae H., Chen S., Khademhosseini A., (2012), Microfabricated Biomaterials for Engineering 3D Tissues , Advanced Materials, 24, 14, 1782–1804.
  • Li W.J., Laurencin C.T., Caterson E.J., Tuan R.S., Ko F.K., (2002), Electrospun nanofibrous structure: A novel scaffold for tissue engineering , Journal of Biomedical Materials Research, 60 (4), 613–621.
  • Rezwan K., Chen Q.Z., Blaker J.J., Boccaccini A. R., (2006), Biodegradable and bioactive porous polymer/inorganic composite scaffolds for bone tissue engineering , Biomaterials, 27, 18, 3413–3431.
  • Abdal-hay A., Tijing L.D., Lim J. K., (2013), Characterization of the surface biocompatibility of an electrospun nylon 6/CaP nanofiber scaffold using osteoblasts , Chemical Engineering Journal, 215–216, 57–64.
  • Ravichandran R., Sundarrajan S., Venugopal J. R., Mukherjee S., Ramakrishna S., (2012), Advances in Polymeric Systems for Tissue Engineering and Biomedical Applications , Macromolecular Bioscience, 12, 3, 286–311.
  • Agarwal S., Wendorff J. H., Greiner A., (2008), Use of electrospinning technique for biomedical applications , Polymer, 49, 26, 5603–5621.
  • Tuzlakoglu K., Bolgen N., Salgado A. J., Gomes M. E., Pıskın E., Reıs R. L., (2005), Nano- and micro-fiber combined scaffolds: A new architecture for bone tissue engineering , Journal of Materials Science: Materials in Medicine, 16, 12, 1099 – 1104.
  • Stevens M.M., George J.H., (2005), Exploring and Engineering the Cell Surface Interface , Science, 310, 5751, 1135-1138.
  • Nair L. S., Laurencin C. T., (2007), Biodegradable polymers as biomaterials , Progress in Polymer Science, 32, 8-9, 762–798.
  • Puppi D., Chiellini F., Piras A. M., Chiellini E., (2010), Polymeric materials for bone and cartilage repair , Progress in Polymer Science, 35, 4, 403–440.
  • Koç A., (2008), Mezenkimal Kök Hücrelerinin ve Kompozit İskelelerin Kullanımıyla Kemik Doku Mühendisliği , Ankara Üniveristesi Fen Bilimleri Enstitüsü, Ankara.
  • Formhals A., (1934), Process and apparatus for preparing artificial threads , US patent, 1,975,504.
  • Norton C.L., (1936), Method of and apparatus for producing fibrous or filamentary material , US patent, 2,048,651.
  • Kılıc A., Oruc F., Demir A., (2008), Effects of Polarity on Electrospinning Process , Textile Research Journal, 78, 6, 532-5
  • Wang H-S., Fu G-D., Li X-S., (2009), Functional Polymeric Nanofibers from Electrospinning , Recent Patents on Nanotechnology, 3, 1, 21-31.
  • Shin Y.M., Hohman M.M., Brenner M.P., Rutledge G.C., (2001), Experimental Characterization of Electrospinning: The Electrically Forced Jet and Instabilities , Polymer, 42, 25, 9955-9967.
  • Ju Y.M., Choi J.S., Atala A, Yoo J.J., Lee S.J., (2010), Bilayered scaffold for engineering cellularized blood vessels, Biomaterials, Vol.31 (15), 4313–4321. Url-1, http://www.centropede.com/UKSB2006/ePoster/ images/background/ElectrospinFigure.jpg, 21.04.2014
  • Huang Z.M., Zhang Y.Z., Kotakic M., Ramakrishna S., (2003), A Review on Polymer Nanofibers by Electrospinning and Their Applications in Nanocomposites , Composites Science and Technology, 63, 15, 2223–2253.
  • John M.J., Thomas S., (2008), Biofibres and biocomposites, Carbohydrate Polymers, 71, 3, 343–364.
  • Chen S., Hou H., Hu P., Wendorff J.H., Greiner A., Agarwal S., (2009), Polymeric Nanosprings by Bicomponent Electrospinning , Macromolecular Materials and Engineering, 294, 4, 265–271.
  • Kim T. G., Shin H., Lim D. W., (2012), Biomimetic Scaffolds for Tissue Engineering , Advanced Functional Materials, 22, 12, 2446–2468.
  • Khan N., (2012), Applications of electrospun nanofibers in the biomedical field , Studies by Undergraduate Researchers at Guelph, 5, 2, 63-73.
  • Ramakrishna S., Fujihara K., Teo W-E., Lim T-C., Ma Z., (2005), An Introduction to Electrospinning and Nanofibers, World Scientific Publishing Co. Pte. Ltd., Singapur.
  • Jırsak O., Cengiz Çallıoğlu F., (2013), Elektro Lif Çekim Yöntemi İle Poliüretan Nano Lif Üretiminde Polimer ve Tuz Konsantrasyonunun Lif Özelliklerine Etkisi , Tekstil ve Mühendis, 20, 90, 1-16.
  • Zong X., Li S., Chu B., Chen E., Garlick B., Kim K., Fang D., Chiu J., Zimmerman T., Brathwaite C., Hsiao B.S., Chu B., (2004), Prevention of postsurgeryinducedabdominal adhesions by electrospunbioabsorbable nanofibrous poly(lactide-coglycolide)-based membranes , Annals of Surgery, 240, 5, 910- 915.
  • Goonoo N., Bhaw-Luximon A., Bowlin G. L., Jhurry D., (2013), An assessment of biopolymer- and synthetic polymer-based scaffolds for bone and vascular tissue engineering , Polymer International, 62, 4, 523–533.
  • Vaz C. M., Tuijl S. V., Bouten C. V. C., Baaijens F. P. T., (2005), Design of scaffolds for blood vessel tissue engineering using a multi-layering electrospinning technique , Acta Biomaterialia, 1, 5, 575–582.