Nanolif yapılı polimerik doku iskeleleri

ÖZET: Doku iskeleleri; üç boyutlu, gözenekli, biyo-bozunur, biyo-uyumlu ve uygun mekanik dayanıma sahip malzemelerdir. Doku iskeleleri, üzerine ekilen kültürlenmiş hücrelerin yapışmasını, çoğalmasını, farklılaşmasını sağlamaktadırlar. Bu hücreler birleşerek bir doku oluşturmaktadır. Biyopolimerlerden nanolif yapılı doku iskeleleri üretiminde elektrik alan ile lif çekim yöntemi, elde edilen yapının doğal hücre dışı matrise (ECM) benzerliğinden dolayı en çok tercih edilen yöntemlerden biridir. Elektrik alan ile lif çekim sistemi; işlem koşullarına bağlı olarak nanolif matın yapısal özelliklerinin kolay değiştirilebilmesinden dolayı, doku iskelesi üretiminde kabul görmektedir. Bu çalışmada, biyo-bozunur malzemeler, doku iskelelerinin genel yapısı, fonksiyonel özellikleri ve üretim yöntemleri hakkında yapılan bir inceleme sunulmuştur. Amacımız; tekstil araştırmacılarının, nanolif yapılı doku iskelelerinin tıp alanındaki potansiyel uygulamaları ile ilgili farkındalığı arttırmaktır.

Nanofiber structured polymeric tissue scaffolds

Tissue scaffolds are 3D, porous, biodegradable, and biocompatible materials which have an appropriate mechanical strength. Tissue scaffolds enable attachment, proliferation, and differentiation of seeded cultured cells on them. These cells form a tissue by connecting to each other. Electrospinning is one of the most preferred methods in nanospun tissue scaffold production from biopolymers owing to the resemblance of obtained surface with extracellular matrix (ECM). Electrospinning system have gained acceptance in tissue scaffold production due to the easily changeability of structural properties of nanospun mats with process parameters. In this study, a review about biodegradable materials, general structure of tissue scaffolds, functional properties, and production methods were represented. Our aim was to develop awareness of textile researchers about the potential medical applications of nanospun tissue scaffolds.

___

  • 1.Martina M., Hutmacher D. W., (2007), Biodegradable polymers applied in tissue engineering research: A review, Polymer International, 56, 2, 145–157.
  • 2.Armentano I., Dottori M., Fortunati E., Mattioli S., Kenny J.M., (2010), Biodegradable polymer matrix nanocompo- sites for tissue engineering: A review, Polymer Degradation and Stability, 95, 11, 2126-2146.,
  • 3.Lin T.(Ed.), (2011), Nanofibers - Production, Properties and Functional Applications, Chapter 14., InTech. Open Access Publisher.
  • 4.Zorlutuna P., Annabi N., Unal G. C., Nikkhah M., Cha J. M., Nichol J.W., Manbachi A., Bae H., Chen S., Khademhosseini A., (2012), Microfabricated Biomaterials for Engineering 3D Tissues, Advanced Materials, 24, 14, 1782–1804.
  • 5.Li W.J., Laurencin C.T., Caterson E.J., Tuan R.S., Ko F.K., (2002), Electrospun nanofibrous structure: A novel scaffold for tissue engineering, Journal of Biomedical Materials Re- search, 60 (4), 613–621.
  • 6.Rezwan K., Chen Q.Z., Blaker J.J., Boccaccini A. R., (2006), Biodegradable and bioactive porous poly- mer/inorganic composite scaffolds for bone tissue engineer- ing, Biomaterials, 27, 18, 3413–3431.
  • 7.Abdal-hay A., Tijing L.D., Lim J. K., (2013), Characteriza- tion of the surface biocompatibility of an electrospun nylon 6/CaP nanofiber scaffold using osteoblasts, Chemical En- gineering Journal, 215–216, 57–64.
  • 8.Ravichandran R., Sundarrajan S., Venugopal J. R., Mukher- jee S., Ramakrishna S., (2012), Advances in Polymeric Sys- tems for Tissue Engineering and Biomedical Applications, Macromolecular Bioscience, 12, 3, 286–311.
  • 9.Agarwal S., Wendorff J. H., Greiner A., (2008), Use of electrospinning technique for biomedical applications, Polymer, 49, 26, 5603–5621.
  • 10. Tuzlakoglu K., Bolgen N., Salgado A. J., Gomes M. E., Pıskın E., Reıs R. L., (2005), Nano- and micro-fiber com- bined scaffolds: A new architecture for bone tissue engi- neering, Journal of Materials Science: Materials in Medi- cine, 16, 12, 1099 – 1104.
  • 11. Stevens M.M., George J.H., (2005), Exploring and Engi- neering the Cell Surface Interface, Science, 310, 5751, 1135-1138.
  • 12. Nair L. S., Laurencin C. T., (2007), Biodegradable poly- mers as biomaterials, Progress in Polymer Science, 32, 8-9, 762–798.
  • 13. Puppi D., Chiellini F., Piras A. M., Chiellini E., (2010), Polymeric materials for bone and cartilage repair, Progress in Polymer Science, 35, 4, 403–440.
  • 14. Koç A., (2008), Mezenkimal Kök Hücrelerinin ve Kompozit İskelelerin Kullanımıyla Kemik Doku Mühendisliği, Ankara Üniveristesi Fen Bilimleri Enstitüsü, Ankara.
  • 15. Formhals A., (1934), Process and apparatus for preparing artificial threads, US patent, 1,975,504.
  • 16. Norton C.L., (1936), Method of and apparatus for produc- ing fibrous or filamentary material, US patent, 2,048,651.
  • 17. Kılıc A., Oruc F., Demir A., (2008), Effects of Polarity on Electrospinning Process, Textile Research Journal, 78, 6, 532-539.
  • 18. Wang H-S., Fu G-D., Li X-S., (2009), Functional Poly- meric Nanofibers from Electrospinning, Recent Patents on Nanotechnology, 3, 1, 21-31.
  • 19. Shin Y.M., Hohman M.M., Brenner M.P., Rutledge G.C., (2001), Experimental Characterization of Electrospinning: The Electrically Forced Jet and Instabilities, Polymer, 42, 25, 9955-9967.
  • 20. Ju Y.M., Choi J.S., Atala A, Yoo J.J., Lee S.J., (2010), Bilayered scaffold for engineering cellularized blood ves- sels, Biomaterials, Vol.31 (15), 4313–4321.
  • 21. Url-1, http://www.centropede.com/UKSB2006/ePoster/ images/background/ElectrospinFigure.jpg, 21.04.2014
  • 22. Huang Z.M., Zhang Y.Z., Kotakic M., Ramakrishna S., (2003), A Review on Polymer Nanofibers by Electrospin- ning and Their Applications in Nanocomposites, Compos- ites Science and Technology, 63, 15, 2223–2253.
  • 23. John M.J., Thomas S., (2008), Biofibres and biocomposites, Carbohydrate Polymers, 71, 3, 343–364.
  • 24. Chen S., Hou H., Hu P., Wendorff J.H., Greiner A., Agar- wal S., (2009), Polymeric Nanosprings by Bicomponent Electrospinning, Macromolecular Materials and Engineer- ing, 294, 4, 265–271.
  • 25. Kim T. G., Shin H., Lim D. W., (2012), Biomimetic Scaf- folds for Tissue Engineering, Advanced Functional Materi- als, 22, 12, 2446–2468.
  • 26. Khan N., (2012), Applications of electrospun nanofibers in the biomedical field, Studies by Undergraduate Research- ers at Guelph, 5, 2, 63-73.
  • 27. Ramakrishna S., Fujihara K., Teo W-E., Lim T-C., Ma Z., (2005), An Introduction to Electrospinning and Nanofibers, World Scientific Publishing Co. Pte. Ltd., Singapur.
  • 28. Jırsak O., Cengiz Çallıoğlu F., (2013), Elektro Lif Çekim Yöntemi İle Poliüretan Nano Lif Üretiminde Polimer ve Tuz Konsantrasyonunun Lif Özelliklerine Etkisi, Tekstil ve Mühendis, 20, 90, 1-16.
  • 29. Zong X., Li S., Chu B., Chen E., Garlick B., Kim K., Fang D., Chiu J., Zimmerman T., Brathwaite C., Hsiao B.S., Chu B., (2004), Prevention of postsurgeryinducedabdominal adhesions by electrospunbioabsorbable nanofibrous poly(lactide-coglycolide)-based membranes, Annals of Surgery, 240, 5, 910- 915.
  • 30.31.Goonoo N., Bhaw-Luximon A., Bowlin G. L., Jhurry D., (2013), An assessment of biopolymer- and synthetic poly- mer-based scaffolds for bone and vascular tissue engineer- ing, Polymer International, 62, 4, 523–533.
  • 31.Vaz C. M., Tuijl S. V., Bouten C. V. C., Baaijens F. P. T., (2005), Design of scaffolds for blood vessel tissue engineer- ing using a multi-layering electrospinning technique, Acta Biomaterialia, 1, 5, 575–582.