HAM VE MODİFİYE DİATOMİT İÇEREN POLİPROPİLEN DOKUSUZ YÜZEYLERİN BOYANABİLİRLİĞİ

Bu çalışmada diatomit katkılandırılmış polipropilen dokusuz yüzeyler eriyik üfleme tekniği ile üretilmiş ve bu yüzeylerin morfoloji, termal ve boyanabilirlik özellikleri incelenmiştir. Polipropilenin boyanabilirliğini artırmak amacı ile amorf silika olan diatomit minerali, polipropilen içerisine eriyik fazında ilave edilmiştir. Polipropilen ile diatomit arasındaki uyumu iyileştirmek için diatomit florokarbonla kaplanmıştır. Aynı amaç doğrultusunda maleik anhidrit aşılanmış polipropilen, uyumlaştırıcı olarak kullanılmıştır. Üretilen dokusuz yüzeyler iki farklı dispersiyon boyarmaddesi (Setapers Red P2G ve Setapers Blue TFBL-NEW) kullanılarak iki farklı koyulukta (%0,5 ve %1,5) ve üç farklı sıcaklıkta (110ºC, 120ºC ve 130ºC) boyanmıştır. Her bir boyama koşulu altında diatomit içermeyen polipropilen dokusuz yüzeyi standart olarak ele alınmış, numunelerin CIELAB (L*, a*, b*, C*) ve K/S değerleri bulunmuş ve elde edilen renk özellikleri ve renk verimleri değerlendirilmiştir. Özellikle öğütülmüş ve kaplanmamış diatomit kullanılarak üretilen polipropilen dokusuz yüzeylerin boyanabilirliği önemli derecede iyileşmiştir. Optimum boyama sıcaklığı ise 120oC olarak tespit edilmiştir.

DYEABILITY OF RAW AND MODIFIED DIATOMITE CONTAINING POLYPROPYLENE NONWOVEN FABRICS

In this study, nonwoven fabrics were generated by adding diatomite into polypropylene using meltblowing technique and the morphological, thermal and dyeability properties of these nonwoven fabrics were investigated. In order to increase the dyeability of polypropylene, diatomite mineral, being an amorphous silica, was added into polypropylene in the melt stage. Diatomite was coated with fluorocarbon to improve compatibility between polypropylene and diatomite. Pursuing the same goal, maleic anhydride grafted polypropylene was used as a compatibilizer. The nonwovens generated were dyed at two different concentrations (0,5% and 1,5%) and at three different temperatures (110ºC, 120ºC and 130ºC) using two different dispersion dyestuffs (Setapers Red P2G and Setapers Blue TFBL-NEW). Under each dyeing condition, the non-diatomite polypropylene nonwoven sample was taken as the reference. CIELAB (L*, a*, b*, C*) and K/S values of the samples were determined and the colour properties and colour yields were evaluated. Especially, the dyeability of polypropylene nonwovens generated using ground and uncoated diatomite has significantly been improved. The optimum dyeing temperature was determined to be 120oC.

Kaynakça

Maddah, H. A., (2016), Polypropylene as a promising plastic: A review, American Journal of Polymer Science, 6(1), 1-11.

Rabiei, N., Kish, M. H., Amirshahi, S. H., Radjabian, M., (2012), The kinetic and thermodynamic parameters of dyeing of polypropylene/Clay composite fibers using disperse dye, Dyes and Pigments, 94 (3), 386-392.

Ataeefard, M., Mohseni, M., Moradian, S., (2016), Polypropylene/clay nanocomposite: kinetic and thermodynamic of dyeing with various disperse dyes, The Journal of The Textile Institute, 107(2), 182-190.

Gupta, M. L., Cook, F., Etters, J. N., Wu, X., Liu, H., (2010), Aqueous processes for dyeing generic, unmodified polypropylene fiber, Journal of Engineered Fibers and Fabrics, 5(2), 27-39.

Burkinshaw, S. M., Froehling, P. E., Mignanelli, M., (2002), The effect of hyperbranched polymers on the dyeing of polypropylene fibres, Dyes and Pigments, 53, 229-235.

Ataeefard, M., Moradian, S., (2012), Preparing dyeable PP fiber nanocomposites using the special cubic mixture experimental design, The Journal of The Textile Institute, 103(11), 1169-1182.

Mirjalili, F., Moradian, S., Ameri, F., (2013), Enhancing the dyeability of polypropylene fibers by melt blending with polyethylene terephthalate, The Scientific World Journal, 468542, 1-10.

Davulcu, A., Dogan, M., (2014), Production of dyeable polypropylene fiber using polyhedral oligomeric silsesquioxanes via melt spinning, Fiber and Polymers, 15(11), 2370–2375.

Ghoul, E. Y., Martel, B., Achari, E. A., Campagne, C., Razafimahefa, L., Vroman, I., (2010), Improved dyeability of polypropylene fabrics finished with b-cyclodextrin–citric acid polymer, Polymer Journal, 42, 804–811.

Toshniwal, L., Fan, Q., Ugbolue, S. C., (2007), Dyeable polypropylene fibers via nanotechnology, Journal of Applied Polymer Science, 106(1), 706–711.

Salehi, M. M., Ataeefard, M., Moradian, S., (2017), The effect of nanoclay, PP and PP-g-MA Type on dyeing properties of PP/clay nanocomposite with various dyes: A way to investigate the dyeability mechanism, The Progress in Color, Colorants and Coatings, 10(2), 73-84.

Teli, M. D., Desai, P. V., (2015), Disperse and acid dyeable polypropylene polyblend fibers, International Journal of Current Engineering and Technology, 5(4), 2567-2571.

Shahidi, S., Moazzenchi, B., Ghoranneviss, M., Azizighannad, S., (2013), Investigation on dyeability of polypropylene fabrics grafted with chitosan after plasma modification, The European Physical Journal Applied Physics, 62(1), 10801.

Round, F. E., Crawford, R. M., Mann, D. G., (1990), The diatoms: biology and morphology of the genera, Cambridge University Press Publications, United Kingdom.

National minerals information center., Diatomite statistics and information, http://minerals.usgs.gov/minerals/pubs/commodity/ diatomite/ diatomyb03.pdf, 31.03.2021.

Deniz, V., (2011), Comparison with some porous materials and the effects of powder filling on breakage parameters of diatomite in dry ball milling, Particulate Science and Technology: An International Journal, 29(5), 428-440.

Maier, M., (2001), Amorphous silica in working environments a toxicological overview, (Degussa), Mulhouse, France.

Chen J., Liu X., Li H., (2007), Improvement in processability of metallocene polyethylene by ultrasound and binary processing aid, Journal of Applied Polymer Science, 103(3), 1927–1935.

Hashimoto, T., & Mizuhata, M., (2012), Discrimination of transparent polyethylene films based on identification of inorganic antiblocking agents, Journal of Forensic Science, 57(3), 744-749.

Hu, S. F., Zhu, X. B., Hu, W., Yan, L., Cai, C., (2013), Crystallization behaviors and foaming properties of diatomite-filled polypropylene composites, Polymer Bulletin, 70, 517-533.

Liang, J. Z., (2008), Effects of extrusion conditions on die-swell behavior of polypropylene/diatomite composite melts, Polymer Testing, 27(8), 936–940.

Liang, J. Z., (2009), Impact fracture toughness and morphology of diatomite-filled polypropylene composites, Polymer Engineering & Science, 49(8), 1603–1607.

Liang, J. Z., (2010), Effects of diatomite on extrudate swell behavior of polypropylene composite melts, Journal of Applied Polymer Science, 118(1), 385–389.

Liang, J. Z., (2011), Quantitative description of interfacial strength in polypropylene/inorganic particle composites, Polymer Composites, 32(5), 821-828.

Liu, X., & Li, H., (2004), Effect of diatomite/polyethylene glycol binary processing aids on the rheology of a metallocene linear lowdensity polyethylene, Journal of Applied Polymer Science, 93(4), 1546–1552.

Liu, X., & Li, H., (2005), Effect of diatomite/polyethylene glycol binary processing aid on the melt fracture and the rheology of polyethylenes, Polymer Engineering & Science, 45(7), 898-903.

Liu, X., Xie, M., Li, H., (2005), Effect of inorganic fillers in binary processing aids on the rheology of a metallocene linear low-density polyethylene, Journal of Applied Polymer Science, 96(5), 1824– 1829.

Liu, X., Chen, J., Li, H., (2006), Phase morphology and rheological properties of metallocene-catalyzed linear low-density polyethylene with a small amount of diatomite/oligomer hybrids, Journal of Polymer Science: Part B Polymer Physics, 44(9), 1287–1295.

Xie, M., Liu, X., Li, H., (2006), Influence of poly (ethylene glycol)- containing additives on extrusion of ultrahigh molecular weight polyethylene / polypropylene blend, Journal of Applied Polymer Science, 100(2), 1282–1288.

Xie, M., & Li, H., (2008), Mechanical properties of an ultra-high molecular-weight polyethylene/polypropylene blend containing poly (ethylene glycol) additives, Journal of Applied Polymer Science, 108(5), 3148–3153.

Xie, M., Chen, J., Li, H., (2009), Morphology and mechanical properties of injection-molded ultra-high molecular weight polyethylene/polypropylene blends and comparison with compression molding, Journal of Applied Polymer Science, 111(2), 890–898.

Yang, R., Yu, J., Liu, Y., Wang, K., (2005), Effects of inorganic fillers on the natural photo-oxidation of high-density polyethylene, Polymer Degradation and Stability, 88(2), 333-340.

Yang, R., Liu, Y., Yu, J., Zhang, D., (2008), Spatial heterogeneity of photo-oxidation and its relation with crack propagation in polyethylene composites, Polymer Engineering & Science, 48(11), 2270-2276.

Özen, İ., Şimsek, S., Okyay, G., (2015), Manipulating surface wettability and oil absorbency of diatomite depending on processing and ambient conditions, Applied Surface Science, 332, 22-31.

Özen, İ., Okyay, G., Şimşek, S., Duran, D., (2017), Oil absorbency of diatomite embedded polypropylene meltblown composite structures, Journal of Industrial Textiles, 46(7), 1552-1578.

Özen, İ., (2018), Eriyik üfleme tekniğiyle üretilmiş, farklı tipte diatomit içeren polipropilen dokusuz yüzeylerin yağ emicilik özelliklerinin incelenmesi, Tekstil ve Mühendis, 25(110), 68-77.

Organik Kimya A.Ş., (2013), Orgaguard® FC 6000 technical datasheet, İstanbul, Türkiye.

Kuo, C. F. J., Lan, W. L., Chen, S. H., Lin, F. S., Dong, M. Y., (2018), Development of disperse dye polypropylene fiber and process parameter optimization Part I: development of dyeable polypropylene fiber and parameter optimization, Textile Research Journal, 88(1), 3-13.

Özen, I., (2015), Enhanced dyeability of poly (ethylene terephthalate)/organoclay nanocomposite filaments, Coloration Technology, 131(6), 464-473.

Varga, J., (1995), Polypropylene structure, blends and composites, Springer, Chapman and Hall, London.

McDonald, R., (1997), Colour physics for industry, Society of Dyers & Colourists, West Yorkshire, England.

Xiao, W. S., Peng, W. S., Wang, G. X., Wang, F. Y., Weng, K. N., (2004), Infrared spectroscopic study of Changbaishan diatomite, Spectroscopy and Spectral Analysis, 24(6), 690-693.

Li, Y. S., Vecchio, N. E., Lu, W., (2013), Infrared and raman spectra of (3,3,3-trifluoropropyl) trimethoxysilane, its sol and xerogel, Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 105, 213-217.

Yeh, J. T., Chen, C. L., Huang, K. S., (2007), Preparation and application of fluorocarbon polymer/SiO2 hybrid materials, Part 1: preparation and properties of hybrid materials, Journal of Applied Polymer Science, 103(2), 1140-1145.

Lifshutz, N., (2005), On the mean flow pore size distribution of microfiber and nanofiber webs, International Nonwovens Journal, 14(1), 18-24.

Yuan, W., (2014), Effect of fiber diameter and web porosity on breathability of nanofiber mats at various test conditions, MSc. Thesis, The University of Texas at Austin, USA.

Kaynak Göster