Polycaprolactone (PCL) is biocompatible aliphatic polyester with many possible applications in the medical field. Porous electrospun Polycaprolactone (PCL) fibers were produced through a non-solvent induced phase separation mechanism, using binary solvent systems with different properties. The effect of single and binary solvent systems on the fiber size and surface morphology were investigated. Dichloromethane (DCM) was used as a good solvent in mixtures with a poor solvent, dimethyl sulfoxide (DMSO), in order generate to pores on the fiber surface. The effect of polymer concentrations (12%, 14% and 16%) w/v and solvents ratios (9:1, 7:3 and 5:5) v/v were investigated on nanofiber formation. During electrospun fiber production, the flow rate was 0.12mL/h, the distance between needle and collector was 15cm and the applied voltage was 12kV. SEM micrographs showed successfull production of PCL nanofibers with different solvents. With increasing the polymer concentration and changing the ratio of the solvents porous PCL electrospun nanofiber was produced. In binary solvent systems 16% PCL polymers and (7:3) % solvents ratio solution make even, beads free, smooth and porous PCL electrospun fiber. Combining the inherent properties of the PCL matrix with the characteristic of nanofibrous mats, result in promising materials that can be suitable for different applications, including biomedical applications. The advantages of nanofibrous structures include large surface area, small diameter of pores and high porosity, which make them of great interest in different applications. Porous electrospun fiber is better for cell development.


Hoskins, J. N., & Grayson, S. M. J. M. (2009). Synthesis and degradation behavior of cyclic poly (ε-caprolactone). Macromolecules, 42(17), 6406-6413. Doi: 10.1021/ma9011076

Kim, H. H., Kim, M. J., Ryu, S. J., Ki, C. S., Park, Y. H. J. F. (2016). Effect of fiber diameter on surface morphology, mechanical property, and cell behavior of electrospun poly (ε- caprolactone) mat. Polymer, 17(7), 1033-1042.

Woodruff, M. A., & Hutmacher, D. W. J. P. i. p. s. (2010). The return of a forgotten polymer—Polycaprolactone in the 21st century. Progress in Polymer Science, 35(10), 1217-1256. Doi: 10.1016/j.progpolymsci.2010.04.002

Asandei, A. D (2011). Early Transition Metal Catalyzed Living Radical and Ring Opening Polymerizations for Complex Copolymer Architectures. Paper presented at the 56th Annual Report on Research Under Sponsorship of The American Chemical Society Petroleum Research Fund.

Huang, C.-H., Wang, F.-C., Ko, B.-T., Yu, T.-L., & Lin, C.-C. J. M. (2001). Ring-opening polymerization of ε-caprolactone and Llactide using aluminum thiolates as initiator. Macromolecules, 34(3), 356-361. Doi: 10.1021/ma0014719

Elbay Malikmammadov, Tugba Endogan Tanir, Aysel Kiziltay, Vasif Hasirci & Nesrin Hasirci (2018) PCL and PCL-based materials in biomedical applications, Journal of Biomaterials Science, Polymer Edition, 29:7-9, 863-893, DOI: 10.1080 /09205063.2017.1394711

Aydemir Sezer, U., Arslantunali, D., Aksoy, E., Hasirci, V. and Hasirci, N. (2014). Poly(ε-caprolactone) composite scaffolds loaded with gentamicin-containing β-tricalcium phosphate/gelatin microspheres for bone tissue engineering applications. J. Appl. Polym. Sci. 131, 40110, doi: 10.1002/app.40110

Sezer, U. A., Billur, D., Huri, G., Huri, P. Y., Aksoy, E. A., Terzioglu, H. (2014). In vivo performance of poly (ε- caprolactone) constructs loaded with gentamicin releasing composite microspheres for use in bone regeneration. Journal of Biomaterial and Tissue Engineering, 4(10), 786-795. Doi: doi.org/10.1166/jbt.2014.1238

De La Ossa, D. H. P., Ligresti, A., Gil-Alegre, M., Aberturas, M., Molpeceres, J., Di Marzo, V., & Suárez, A. T. (2012). Poly-ε- caprolactone microspheres as a drug delivery system for cannabinoid administration: Development, characterization and in vitro evaluation of their antitumoral efficacy. Journal of Control Release, 161(3), 927-932.

Tong, S. Y., Wang, Z., Lim, P. N., Wang, W., San Thian, E. J. M. S., & C, E. (2017). Uniformly-dispersed nanohydroxapatitereinforced poly (ε-caprolactone) composite films for tendon tissue engineering application. Materials Science and Engineering: C, 70, 1149-1155. Doi: 10.1016/j.msec.2016.03.051.

Sabzi, F., & Boushehri, A. J. E. p. j. (2005). Sorption phenomena of organic solvents in polymers: Part II. European Polymer Journal, 41(9), 2067-2087. Doi: 10.1016/j.eurpolymj.2005.03.019.

Huang, Y.-p., XIANG, X., Luo, X.-l., & Ma, D.-z. J. C(2002). Molecular weight dependence of the melting behavior of poly (ε- caprolactone). Journal of Polymer Science, 20(1), 45-51.

Feng, S., Chen, Y., Meng, C., Mai, B., Wu, Q., Gao, H. (2015). Study on the condensed state physics of poly (ε-caprolactone) nano-aggregates in aqueous dispersions. Journal of Colloid and Interface Science, 450, 264-271. Doi: 10.1016/j.jcis.2015.03.029.

Sch ler, K., Achilles, A., B renwald, R., Hackel, C., & Saalw chter, K. . M. (2013). Dynamics in crystallites of poly (ε- caprolactone) as investigated by solid-state NMR. Macromolecules, 46(19), 7818-7825. Doi: 10.1021/ma401532v

Murphy, S. (2011). Melting point depression in biodegradable polyesters. University of Birmingham,

Yildirimer, L., & Seifalian, A. M. J. B. a. (2014). Threedimensional biomaterial degradation—Material choice, design and extrinsic factor considerations. Biotechnology Advances, 32(5), 984-999. Doi: 10.1016/j.biotechadv.2014.04.014.

Díaz, E., Sandonis, I., & Valle, M. B. . . o. N. (2014). In vitro degradation of poly (caprolactone)/nHA composites. Journal of Nanomaterials, 2014. 802435. doi: 10.1155/2014/802435

Abedalwafa, M., Wang, F., Wang, L., & Li, C. J. R. A. M. S. (2013). Biodegradable poly-epsilon-caprolactone (PCL) for tissue engineering applications: a review. Rev. Adv. Matter. Sci, 34(2), 123-140.

Gleadall, A., Pan, J., Kruft, M.-A., & Kellom ki, M. . A. b. (2014a). Degradation mechanisms of bioresorbable polyesters. Part 1. Effects of random scission, end scission and autocatalysis. Acta Biomaterialia, 10(5), 2223-2232. Doi: 10.1016/j.actbio. 2013.12.039.

Gleadall, A., Pan, J., Kruft, M.-A., & Kellom ki, M. . A. b. (2014b). Degradation mechanisms of bioresorbable polyesters. Part 2. Effects of initial molecular weight and residual monomer. Acta Biomaterialia, 10(5), 2233-2240. Doi: 10.1016/j.actbio. 2014.01.017.

Martins, A. M., Pham, Q. P., Malafaya, P. B., Sousa, R. A., Gomes, M. E., Raphael, R. M (2009). The role of lipase and α- amylase in the degradation of starch/poly (ɛ-caprolactone) fiber meshes and the osteogenic differentiation of cultured marrow stromal cells. Tissue Engineering Part A, 15(2), 295-305. Doi: 10.1089/ten.tea.2008.0025

Tietz, N. W., & Shuey, D. F. J. C. c. (1993). Lipase in serum--the elusive enzyme: an overview. Clinical Chemistry, 39(5), 746-756.

Hernández, A. R., Contreras, O. C., Acevedo, . C., & Moreno, L. G. N. . A. . P. S. (2013). Poly (ε-caprolactone) degradation under acidic and alkaline conditions. American Journal of Polymer Science, 3, 70-75.

Edlund U., Albertsson A.C. (2002) Degradable Polymer Microspheres for Controlled Drug Delivery. In: Degradable Aliphatic Polyesters. Advances in Polymer Science, vol 157. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540- 45734-8_3

Xu, F., Wang, Z., & Yang, W. J. B. (2010). Surface functionalization of polycaprolactone films via surface-initiated atom transfer radical polymerization for covalently coupling celladhesive biomolecules. Biomaterials, 31(12), 3139-3147. Doi: 10.1016/j.biomaterials.2010.01.032.

Shah, L. K., & Amiji, M. M. J. P. r. (2006). Intracellular delivery of saquinavir in biodegradable polymeric nanoparticles for HIV/AIDS. Pharm Res, 23(11), 2638-2645. Doi: 10.1007/s11095- 006-9101-7

Maquet, V., Pagnoulle, C., Evrard, B., Jerome, R., Foidart, J.-M., & Frankenne, F. (2008). Active Substance Delivery System Comprising A Hydrogel Atrix And Microcarriers. In: Google Patents.

Heimowska, A., Morawska, M., & Bocho-Janiszewska, A. (2017). Biodegradation of poly (ε-caprolactone) in natural water environments. Polish Journal of Chemical Technology, 19(1), 120--126.

Selli, F., Erdoğan, U., Hufenus, R., & Perret, E. (2020). Mesophase in melt-spun poly (ϵ-caprolactone) filaments: Structure–mechanical property relationship. Polymer, 206, 122870.

Bikiaris, D. N., Papageorgiou, G. Z., Achilias, D. S., Pavlidou, E., & Stergiou, A. J. E. p. j. (2007). Miscibility and enzymatic degradation studies of poly (ε-caprolactone)/poly (propylene succinate) blends. European Polymer Journal, 43(6), 2491-2503. Doi: 10.1016/j.eurpolymj.2007.03.051.

Charuchinda, A., Molloy, R., Siripitayananon, J., Molloy, N., & Sriyai, M. J. P. i. (2003). Factors influencing the small‐scale melt spinning of poly (ε‐caprolactone) monofilament fibres. Polymer International, 52(7), 1175-1181. Doi: doi.org/10.1002/ pi.1234

Cipitria, A., Skelton, A., Dargaville, T., Dalton, P., & Hutmacher, D. J. J. o. M. C. (2011). Design, fabrication and characterization of PCL electrospun scaffolds—a review. Journal of Material Chemistry, 21(26), 9419-9453.

Azimi, B., Nourpanah, P., Rabiee, M., Arbab, S. J. J. o. E. F., & Fabrics. (2014). Poly (E-caprolactone) Fiber: an overview. Fibers and Fabrics, 9(3), 155892501400900309.

Faruk, O., Bledzki, A. K., Fink, H.-P., & Sain, M. (2012). Biocomposites reinforced with natural fibers: 2000–2010. Progress in polymer science, 37(11), 1552-1596.

Martínez-Abad, A., Sánchez, G., Fuster, V., Lagaron, ., & Ocio, M. (2013). Antibacterial performance of solvent cast polycaprolactone (PCL) films containing essential oils. Food Control, 34(1), 214-220.

Mia, R., & Sultana, S. (2020). Fabrication and properties of silver nanowires (AgNWs) functionalized fabric. SN Applied Sciences, 2(12), 1-15. Doi: 10.1007/s42452-020-03845-1

Kelly, C. A., Murphy, S. H., Leeke, G. A., Howdle, S. M., Shakesheff, K. M., & Jenkins, M. J. (2013). Rheological studies of polycaprolactone in supercritical CO2. European polymer journal, 49(2), 464-470.

Woodruff, M. A., & Hutmacher, D. W. (2010). The return of a forgotten polymer—Polycaprolactone in the 21st century. Progress in polymer science, 35(10), 1217-1256.

Sin, L. T., & Tueen, B. S. (2019). Polylactic acid: a practical guide for the processing, manufacturing, and applications of PLA: William Andrew.

Dobrzański, L. A., Hajduczek, E., & Hudecki, A. (2015). Materials Challenges in Regenerative Medicine. Polymer nanofibers produced by electrospinning applied in regenerative medicine, Open Access Library, 3, 12-82.

Katsogiannis, K. A. G., Vladisavljević, G. T., & Georgiadou, S. . E. P. J. (2015). Porous electrospun polycaprolactone (PCL) fibres by phase separation. European Polymer Journal, 69, 284-295. Doi: 10.1016/j.eurpolymj.2015.01.028.

Enis, I. Y., Vojtech, J., & Sadikoglu, T. G. J. (2017). Alternative solvent systems for polycaprolactone nanowebs via electrospinning. Journal of Industrial Textiles, 47(1), 57-70.

Qin, X., Wu, D. J. J. o. t. a., & calorimetry. (2012). Effect of different solvents on poly (caprolactone)(PCL) electrospun nonwoven membranes. Journal of the thermal analysis and caliometry, 107(3), 1007-1013.

Wang, Y., Wang, B., Wang, G., Yin, T., & Yu, Q. J. P. b. (2009). A novel method for preparing electrospun fibers with nano- /micro-scale porous structures. Polymer Bulletin, 63(2), 259-265. Doi: 10.1007/s00289-009-0078-3

Nguyen, T.-H., Bao, T. Q., Park, I., & Lee, B.-T. J. J. o. B. A. (2013). A novel fibrous scaffold composed of electrospun porous poly (ɛ-caprolactone) fibers for bone tissue engineering. Journal of Biomaterials. 28(4), 514-528.

Kulpreechanan, N., Bunaprasert, T., & Rangkupan, R. (2014). Electrospinning of polycaprolactone in dichloromethane /dimethylformamide solvent system. Paper presented at the Advanced Materials Research.

Şimşek, M. . . o. M. R. (2020). Tuning surface texture of electrospun polycaprolactone fibers: Effects of solvent systems and relative humidity. Journal of Materials Research, 35(3), 332- 342. Doi: 10.1557/jmr.2020.20

Ernstsson, M., & W rnheim, T. (2007). Surface analytical techniques applied to cleaning processes. Diva-Portal.

Borjigin, M., Eskridge, C., Niamat, R., Strouse, B., Bialk, P., & Kmiec, E. B. J. I. j. o. n. (2013). Electrospun fiber membranes enable proliferation of genetically modified cells. Int J Nanomedicine, 8, 855-864. Doi: 10.2147/IJN.S40117

Haotian Li, Tiankui Qiao, Ping Song, HuiLing Guo, Xiaofeng Song, Baochang Zhang & Xuesi Chen (2015) Star-shaped PCL/ PLLA blended fiber membrane via electrospinning, Journal of Biomaterials Science, Polymer Edition, 26:7, 420- 432, DOI: 10.1080/09205063.2015.1015865.