CHARACTERIZATION OF CHEMICAL-TREATED AND GAMMA IRRADIATED PINEAPPLE LEAF FABRIC/EPOXY COMPOSITES: SURFACE STRUCTURE AND PHYSICO-MECHANICAL PROPERTIES

The objective of this study is to investigate the effect of gamma irradiation and chemical (NaOH) treatment on the physicomechanical properties of the pineapple/epoxy composites. The manual lay-up process was used here in fabricating pineapple leaf fabric (PALF fabric) reinforced composites. A scanning electron microscope (SEM) has been exploited for understanding the outward structure of composites. FTIR and EDS analysis recognized the existence of silicon and Si–O–Si/C–O–Si cross-linked configurations on the outward structure of composites. From the experimental results, it was found that gamma irradiation subjected composite sample had significant improvement in mechanical properties in comparison with composites reinforced with chemical treated pineapple leaf fabric and untreated composite. Tensile strength (TS), tensile modulus (TM), bending strength (BS), bending modulus (BM) and impact strength (IS) of gamma irradiated composite increased by approximately 71.26 %, 461.29%, 72.45%, 24.52% and 40.44% respectively compared to untreated composites. Furthermore, Gamma irradiated composite exhibited an increase of 49.98% TS, 40.46% TM, 35.82% BS, 11.21% BM and 12.44% IS compared to chemical treated pineapple leaf fabric composites. The reason for the improved physico-mechanical properties of gamma irradiated sample is due to the formation of crosslink in fiber and matrix molecules. The water absorption behavior of the composites was also tested.

GAMA IŞINI VE KİMYASAL İŞLEM UYGULANMIŞ ANANAS LİFLERİNDEN ÜRETİLEN KUMAŞ/ EPOKSİ KOMPOZİTLERİN KARAKTERİZAYONU: YÜZEY YAPISI VE FİZİKO MEKANİK ÖZELLİKLERİ

Çalışmanın amacı, gama ışınları ve kimyasal (NaOH) işlemin ananas/ epoksi kompozitlerinin fiziko- mekanik özellikleri üzerine etkilerinin araştırılmasıdır. Ananas yapraklarından elde edilen lifler ile oluşturulan kumaşların takviye elemanı olarak kullanıldığı kompozitler, el ile yatırma tekniği kullanılarak üretilmiştir. Kompozitin dış yapısının anlaşılabilmesi için taramalı elektron mikroskobundan (SEM) faydalanılmıştır. Kompozitin dış yapısındaki silikonun mevcudiyeti ve Si–O–Si/C–O–Si çapraz bağlarının konfigürasyonu FTIR ve EDS analizleri ile tanımlanmıştır. Deneysel sonuçlar sayesinde, gama ışınları uygulanan kompozit numunelerinin mekanik özelliklerinin kimyasal işlem uygulanan ve uygulanmayan kumaşlar ile takviye edilmiş kompozit numunelerine göre önemli derecede iyileşme sağladığı belirlenmiştir. Gama ışınları uygulanan kompozitlerin kimyasal işlem uygulanmamış kompozitlere göre çekme dayanımı (ÇD), çekme modülü (ÇM), eğilme dayanımı (ED), eğilme modülü (EM) ve darbe dayanım (DD) değerleri yaklaşık olarak sırası ile %71,26, %461,29, %72,45, %24,52 ve %40,44 oranlarında artmıştır. Bu duruma ek olarak, gama ışınları uygulanan kompozitler kimyasal işlem uygulanmış kumaşların takviye elemanı olarak kullanıldığı kompozitlere göre %49,98 ÇD, %40,46 ÇM, %35,82 ED, %11,21 EM ve %12,44 DD oranlarında artış sağlamıştır. Gama ışınları uygulanın numunenin fiziko- mekanik özelliklerinin iyileşmesinin sebebi matris ve lif molekülleri arasında çapraz bağların oluşmasıdır. Ayrıca kompozitlerin su absorbsiyon davranışları test edilmiştir.

___

1. Dhal, J., and Mishra, S. C., 2013, Processing and Properties of Natural Fiber-Reinforced Polymer Composite. Journal of Materials., 2013, 1-6.

2. Hossain, M. , Elahi, A., Afrin, S, Khan, M., Jalil, M., and Nazmul Hossain, M., 2015, Mechanical Property Evaluation of PALF Polyester Bio-Composite,In: The 11th International Conference on Mechanical Engineering, 18-20 December.

3. Hossain, M. Elahi, A., Afrin, S, Mahmud, I, Cho, H., and Khan, M, 2017, Thermal Aging of Unsaturated Polyester Composite Reinforced with E-Glass Nonwoven Mat. Autex Research Journal, 17(4), 313-318.

4. Elahi, A., Hossain, M. Afrin, S, and Khan, M., 2014, Study on the Mechanical Properties of Glass Fiber Reinforced Polyester Composites, In: The 3rd International Conference on Mechanical, Industrial and Energy Engineering, Paper ID: ICMIEE-PI-140304.

5. Bledzki, A.,1999, Composites reinforced with cellulose based fibres. Progress in Polymer Science, 24(2), 221-274.

6. Torres, F., Arroyo, O., and Gomez, C. 2007, Processing and Mechanical Properties of Natural Fiber Reinforced Thermoplastic Starch Biocomposites. Journal of Thermoplastic Composite Materials, 20(2),207-223.

7. Mishra, S., Mohanty, A., Drzal, L., Misra, M. and Hinrichsen, G.,2004, A Review on Pineapple Leaf Fibers, Sisal Fibers and Their Biocomposites. Macromolecular Materials and Engineering, 289(11),955-974.

8. Islam, J., Hossain, M., Alom, F, Khan, M.,and Khan, M., 2016, Extraction and characterization of crystalline cellulose from jute fiber and application as reinforcement in biocomposite: Effect of gamma radiation. Journal of Composite Materials, 51(1), 31-38.

9. Uma Devi, L., Bhagawan, S. and Thomas, S., 2012, Polyester composites of short pineapple fiber and glass fiber: Tensile and impact properties. Polymer Composites, 33(7).

10. Arib, R., Sapuan, S., Hamdan, M, Paridah, M. and Zaman, H., 2004, A Literature Review of Pineapple Fibre Reinforced Polymer Composites. Polymers and Polymer Composites, 12(4),341-348.

11. Asim, M., Abdan, K., Jawaid, M., Nasir, M., Dashtizadeh, Z., Ishak, M. and Hoque, M., 2015, A Review on Pineapple Leaves Fibre and Its Composites. International Journal of Polymer Science, 2015, 1- 16.

12. Begum, K. and Islam, M., 2013, Natural fiber as a substitute to synthetic fiber in polymer composites: A review. Research Journal of Engineering Sciences, 2(3), 46-52.

13. Mishra, S., Misra, M., Tripathy,S., Nayak, S. and Mohanty, A., 2001, Potentiality of Pineapple Leaf Fibre as Reinforcement in PALF-Polyester Composite: Surface Modification and Mechanical Performance. Journal of Reinforced Plastics and Composites, 20 (4), 321-334.

14. Motaleb, K., Shariful Islam, M., and Hoque, M., 2018, Improvement of Physicomechanical Properties of Pineapple Leaf Fiber Reinforced Composite. International Journal of Biomaterials, 2018,1-7.

15. Shih, Y., Chang, W., Liu, W., Lee, C., Kuan, C., and Yu, Y.,2014, Pineapple leaf/recycled disposable chopstick hybrid fiber-reinforced biodegradable composites. Journal of the Taiwan Institute of Chemical Engineers. 45(4),2039-2046.

16. Arib, R., Sapuan, S., Ahmad, M., Paridah, M., Zaman, H. and Khairul.,2006, Mechanical properties of pineapple leaf fibre reinforced polypropylene composites. Materials & Design. 27(5),391-396.

17. George, J., Joseph, K., Bhagawan, S.S, and Thomas, S., 1993. Influence of short pineapple fiber on the viscoelastic properties of low-density polyethylene. Materials Letters, 18(3),163-170.

18. Omkumar, M., and Selvakumar,K., 2018, Mechanical Characterization of pineapple leaf fiber and corn husk powder reinforced epoxy composites , In: 4th Brazilian Conference on Composite Materials. Rio de Janeiro, Brazil.

19. Sanjay, M. and Yogesha, B., 2017. Studies on hybridization effect of jute/kenaf/E-glass woven fabric epoxy composites for potential applications: Effect of laminate stacking sequences. Journal of Industrial Textiles, 47(7),1830-1848.

20. Shahriar Kabir, M., Hossain, M., Mia, M., Islam, M., Rahman, M., Hoque, M., and Chowdhury, A., 2018, Mechanical Properties of Gamma-Irradiated Natural Fiber Reinforced Composites. Nano Hybrids and Composites, 23,24-38.

21. Singla, M. and Chawla, V.,2010, Mechanical Properties of Epoxy Resin – Fly Ash Composite. Journal of Minerals and Materials Characterization and Engineering. 9(3),199-210.

22. Sudheer, M., Subbaya, K., Jawali, D., and Bhat, T.,2012, Mechanical Properties of Potassium Titanate Whisker Reinforced Epoxy Resin Composites. Journal of Minerals and Materials Characterization and Engineering. 11(2), 193-211. doi: 10.4236/jmmce.2012.112016.

23. Mallick, P., 1993, Fiber Reinforced Composites: Materials, Manufacturing and Design, 18, 2nd edn, Marcel Dekkar, Inc., New York.

24. George, J., Bhagawan, S.S. and Thomas, S.,1998, Effects of environment on the properties of low-density polyethylene composites reinforced with pineapple-leaf fibre. Composites Science and Technology.. 58(9), 1471-1485.

25. Samal, R.,K. and Ray, M.,C., 1997, Effect of chemical modifications on FTIR spectra. II. Physicochemical behavior of pineapple leaf fiber (PALF). Journal of Applied Polymer Science. 64 (11) 2119-2125.

26. Zhu, J., Zhu, H., Abhyankar, H., and Njuguna, J., 2013, Effect of fibre treatment on water absorption and tensile properties of flax/tannin composites In : The 19th International Conference on Composite Materials. Montreal, Canada..

27. Khan, R., Shauddin , S., Dhar, S., and Khan, M., 2014,Comparative Experimental Studies on the Physico-mechanical Properties of Jute Caddies Reinforced Polyester and Polypropylene Composites. Journal of Polymer and Biopolymer Physics Chemistry, 2(3), 55-61.

28. Senthamaraikannan , P. and Kathiresan, M., 2018, Characterization of raw and alkali treated new natural cellulosic fiber from Coccinia grandis.L. Carbohydrate Polymers, 186, 332-343.

29. Jalil, M.., Sinha, R., Mahabubuzzaman, A, Milon Hossain, M. and Idris, M., 2015, Study on Physical and Structural Properties of JutePalf Blended Yarn Spun by Apron Draft Spinning. Research Journal of Textile and Apparel, 19(3), 9-15.

30. Ren, Y., Yuan, D., Li, W. and Cai, X., 2018, Flame retardant efficiency of KH-550 modified urea-formaldehyde resin cooperating with ammonium polyphosphate on polypropylene. Polymer Degradation and Stability, 151, 160-171.

31. Saaidia,A., Bezazi, A., Belbah, A., Bouchelaghem, H., Scarpa F. and Amirouche, S., 2017, Mechano-physical properties and statistical design of jute yarns. Measurement, 111,284-294.

32. Almaadeed, M., Kahraman, R., Noorunnisa Khanam, P., and AlMaadeed, 2013, Somaya. Characterization of untreated and treated male and female date palm leaves. Materials & Design, 43, 526- 531.

33. ROY, Aparna, Chakraborty, S., Kundu, S., Basak, R., Basu Majumder, S., and Adhikari, B.,2012, Improvement in mechanical properties of jute fibres through mild alkali treatment as demonstrated by utilisation of the Weibull distribution model. Bioresource Technology, 107, 222-228.

34. Sawpan, M., Pickering, K., and Fernyhough, A.,2011, Effect of various chemical treatments on the fibre structure and tensile properties of industrial hemp fibres. Composites Part A: Applied Science and Manufacturing, 42(8),888-895.

35. Choe, H., Sung, and G., Kim, J., 2018,Chemical treatment of wood fibers to enhance the sound absorption coefficient of flexible polyurethane composite foams. Composites Science and Technology, 156, 19-27.

36. Goriparthi, B., Suman , K., and Mohan Rao , N., 2012, Effect of fiber surface treatments on mechanical and abrasive wear performance of polylactide/jute composites. Composites Part A: Applied Science and Manufacturing, 43(10),1800-1808.

37. Arpitha, G.R., Sanjay, M.R., and Yogesha, B., 2014, Review on Comparative Evaluation of Fiber Reinforced Polymer Matrix Composites. Advanced Engineering and Applied Sciences: An International Journal, 4, 44-47.

38. Omrani, E., Menezes, P., and Rohatgi, P., 2016, State of the art on tribological behavior of polymer matrix composites reinforced with natural fibers in the green materials world. Engineering Science and Technology, an International Journal. 19 (2),717-736.

39. Shalwan , A., and Yousif, B., 2013, In State of Art: Mechanical and tribological behaviour of polymeric composites based on natural fibres. Materials & Design. 48,14-24.

40. Sassoni, E., Manzi, S., Motori, A., Montecchi , M., and Canti, M., 2014, Novel sustainable hemp-based composites for application in the building industry: Physical, thermal and mechanical characterization. Energy and Buildings. 77, 219-226.

41. Faruk, O. Cars from Jute and Other Bio-Fibers, 2009. Available online: http://docplayer.net/48269780-Carsfrom- jute-and-other-biofibers.html. (accessed on 28 December 2018).

42. Shinoj, S., Visvanathan R., and Panigrahi, S., 2010, Towards industrial utilization of oil palm fibre: Physical and dielectric characterization of linear low density polyethylene composites and comparison with other fibre sources. Biosystems Engineering. 2010, 106(4), 378-388.

43. Gallo, E., Schartel, B., Acierno, D., Cimino, F., and Russo, P., 2013 Tailoring the flame retardant and mechanical performances of natural fiber-reinforced biopolymer by multi-component laminate. Composites Part B: Engineering., 44(1),112-119.
Tekstil ve Mühendis-Cover
  • ISSN: 1300-7599
  • Yayın Aralığı: Yılda 4 Sayı
  • Başlangıç: 1987
  • Yayıncı: TMMOB Tekstil Mühendisleri Odası
Sayıdaki Diğer Makaleler

DOKUMA KUMAŞLARIN BİLGİSAYAR DESTEKLİ TASARIMI VE ÜRETİMLERİNİN PLANLANMASI

Güngör BAŞER

STUDY ON THE EFFECT OF AIR SUCTION PRESSURE ON THE QUALITY OF COMPACT YARN BY CHANGING THE FREQUENCY OF INVERTER

Amit CHAKRABORTTY, Asif HOSSAIN, Joyjit GHOSH

Dönüştürülebilir Elbise Uygulamaları

Neşe Yaşar ÇEĞİNDİR, Ceren ÖZ

BORNOZ ÜRÜN GELİŞTİRMEDE ANALİTİK HİYERARŞİ PROSESİ VE KALİTE FONKSİYON GÖÇERİMİ UYGULAMASI

Derya TATMAN

GAMA IŞINI VE KİMYASAL İŞLEM UYGULANMIŞ ANANAS LİFLERİNDEN ÜRETİLEN KUMAŞ/ EPOKSİ KOMPOZİTLERİN KARAKTERİZAYONU: YÜZEY YAPISI VE FİZİKO MEKANİK ÖZELLİKLERİ

Md. MONIRUZZAMAN, Mohammad ABDUL JALIL, Md. NAZMUL HOSSAIN, Ismail HOSSAIN, Md. MANIRUZZAMAN

MARKA TERCİHLERİ VE MARKALI GİYSİLERİ SATIN ALMA SIKLIĞI: DAKKA ŞEHRİ, BANGLADEŞ ÜZERİNE BİR ARAŞTIRMA

Marzia DULAL, Md SYDUZZAMAN

CHARACTERIZATION OF CHEMICAL-TREATED AND GAMMA IRRADIATED PINEAPPLE LEAF FABRIC/EPOXY COMPOSITES: SURFACE STRUCTURE AND PHYSICO-MECHANICAL PROPERTIES

Md. MONIRUZZAMAN, Mohammad ABDUL JALIL, Md. NAZMUL HOSSAIN, Ismail HOSSAIN, Md. MANIRUZZAMAN

İNVERTER FREKANSININ DEĞİŞTİRİLMESİ İLE FARKLILAŞTIRILAN HAVA EMİŞ GÜCÜNÜN KOMPAKT İPLİĞİN KALİTESİ ÜZERİNE ETKİSİNİN İNCELENMESİ

Amit CHAKRABORTTY, Joyjit GHOSH, Asif HOSSAIN

Gama Işını ve Kimyasal İşlem Uygulanmış Ananas Liflerinden Üretilen Kumaş/ Epoksi Kompozitlerin Karakterizayonu: Yüzey Yapısı ve Fiziko- Mekanik Özellikleri

Md. MONIRUZZAMAN, Mohammad Abdul JALIL, Md. Nazmul HOSSAIN, Ismail HOSSAIN, Md. MANIRUZZAMAN

Marka Tercihleri ve Markalı Giysileri Satın Alma Sıklığı: Dakka Şehri, Bangladeş Üzerine Bir Araştırma

Marzia DULAL, Md SYDUZZAMAN