SPUNLACE (SU JETİ İLE BAĞLAMA) TEKNOLOJİSİ İLE ÜRETİLEN DOKUSUZ YÜZEYLERİN MORFOLOJİK ÖZELLİKLERİNDEN BAZI PERFORMANS ÖZELLİKLERİNİN YAPAY ZEKA İLE TAHMİNLENMESİ

Dokusuz yüzeylerde lif yerleşimi ve lif dağılım karakteristiği kumaşın fiziksel, mekanik ve geçirgenlik özelliklerini önemli ölçüde etkilemektedir. Literatürdeki çalışmalarda kumaş lif dağılımı ve gözenekliliği ile mekanik ve performans özellikleri arasındaki anlamlı ilişkiler ortaya konmuştur. Bu çalışmada görüntü işleme tekniği kullanılarak geliştirilen algoritma ile dokusuz yüzey kumaş numunelerinden alınan görüntülerden yüzey özniteliklerine ilişkin istatistiksel veriler elde edilmiştir. Elde edilen yüzey öznitelik değerleri hazırlanan yapay sinir ağı modelinde girdi verileri olarak kullanılmıştır. Hava geçirgenliği, makine yönü ve makine tersi yöndeki kopma mukavemeti ve kopma uzaması performans özellikleri ise çıktı verileri olarak kullanılmıştır. Böylece, spunlace (su jeti ile bağlama) teknolojisi ile üretilmiş kumaş numunelerinde doğrudan yüzey görüntülerinden elde edilen doku karakteristiği özellikleri kullanılarak test yapmaksızın hava geçirgenliği, kopma mukavemeti ve kopma uzaması performanslarının tahmin edilmesi hedeflenmiştir. Neticede, deneysel sonuçlar ile yapay sinir ağı tahmin sonuçları arasında hava geçirgenliğinde R2=0,97, kopma mukavemetinde R2=0,90 ve kopma uzamasında R2=0,89 korelasyon katsayısı değerleri elde edilmiştir.

ESTIMATION OF SOME PERFORMANCE PROPERTIES OF NONWOVEN FABRIC PRODUCED WITH SPUNLACE (HYDROENTAGLEMENT) TECHNOLOGY FROM MORPHOLOGICAL CHARACTERISTICS BY USING ARTIFICIAL INTELLIGENCE

Fiber placement and fiber distribution characteristics of nonwoven surfaces significantly affect the physical, mechanical and permeability properties of the fabric. In the studies from the literature, significant relationships between fiber distribution and porosity with mechanical performance properties have been revealed. In this study, an algorithm developed using image processing techniques for statistical data related to texture features were obtained images from nonwoven surface fabric samples. The texture features obtained were used as input data in the artificial neural network model. Air permeability, machine direction breaking strength, cross direction breaking strenth, and breaking elongation performance characteristics were used as output data. Thus, it is aimed to estimate the air permeability, breaking strength and breaking elongation performances of the fabric samples produced with spunlace (hydroentaglement bonding) technology without testing by using the texture characteristic features obtained directly from the surface images. As a result, the correlation coefficient values of R2 = 0,97 in air permeability, R2 = 0,90 in breaking strength and R2 = 0,89 in breaking elongation were obtained between experimental results and artificial neural network prediction results.

___

  • 1. Pourmohammadi A., (2013) Nonwoven materials and joining techniques. In: Jones I and Stylios GK (eds) Joining Textiles: Principles and Applications. 1st ed. Philadelphia: Woodhead Publishing, pp. 565–581.
  • 2. Mbwana N.,S., Jin X., Ting, C.,Yu, C., (2009), Optimum Water Jets Inclination Angle for Better Tensile Strength in Hydroentanglement Process. Fibres & Textiles In Eastern Europe. 75(4), 82-86.
  • 3. Berkalp, O.,B, Pourdeyhimi, B., Seyam, A., (2003 ), Texture Evolution in Hydroentangled Nonwovens. International Nonwovens Journal, 12, 28-35.
  • 4. Lu, Zhi, M., Xia,o M.,Q. (2011), Combination Technology of Spunbond & Spunlace. Advances in Textile Engineering, 331, 241- 244.
  • 5. Hajiani, F., Hosseini, S.,M., Ansari, N., (2010), The influence of water jet pressure settings on the structure and absorbency of spunlace nonwoven. Fibers and Polymers, 11(5), 798-804.
  • 6. Kalebek, N., A., Babaarslan, O., (2016), Fiber Selection for the Production of Nonwovens. In: Jeon H Y(eds) Non-woven Fabrics. London: IntechOpen, pp.1-23.
  • 7. Rawal, A., (2010), Structural analysis of pore size distribution of nonwovens. Journal of the Textile Institute, 101(4), 350-359.
  • 8. Xu, B., (1996), Measurement of pore characteristics in nonwoven fabrics using image analysis. Clothing and Textiles Research Journal, 14(1), 81-88.
  • 9. Berkalp, O., (2006), Air permeability & porosity in spun-laced fabrics. Fibres and Textiles in Eastern Europe, 14(3), 81.
  • 10. A., Rawal, A., Majumdar, S., Anand., T. Shah., (2009), Predicting the Properties of Needlepunched Nonwovens Using Artificial Neural Network, Journal of Applied Polymer Science, 112, pp. 3575-3581.
  • 11. Gong, R., H., Newton, A., (1992), Image-analysis Techniques. Part I: The Measurement of Pore-size Distribution, Journal of the Textile Institute, 83(2), 253-268.
  • 12. Aydilek, A., H., Seyfullah, H., O., Edil., T., B., (2002), Digital image analysis to determine pore opening size distribution of nonwoven geotextiles, Journal of Computing in Civil engineering, 16(4), 280-290.
  • 13. Rawal, A., (2010), Structural analysis of pore size distribution of nonwovens, Journal of the Textile Institute, 101(4), 350-359.
  • 14. Dimassi, M., Koehl, L., Zeng, X., (2008), Pore network modelling using image processing techniques: Application to the nonwoven material, International Journal of Clothing Science and Technology, 20(3): 137-149.
  • 15. Wang, R., Xu, B., Li, C., (2013), Accurate fiber orientation measurements in nonwovens using a multi-focus image fusion technique, Textile Research Journal, 84(2), 115–124.
  • 16. Pourdehyhimi, B., Dent, R., Jerbi, A., (1999), Measuring Fiber Orientation in Nonwovens Part V: Real Webs, Textile Research Journal, 69(3), 185-192.
  • 17. Pourdeyhimi, B., R., Ramanathan, R., Dent., (1996), Measuring fiber orientation in nonwovens: Part I: Simulation, Textile research journal, 66 (11), 713-722.
  • 18. Pourdeyhimi, B., and H., S., Kim., (2002), Measuring fiber orientation in nonwovens: The Hough transform, Textile Research Journal, 72(9), 803-809.
  • 19. Pourdeyhimi, B., R., Dent., (1997), Measuring fiber orientation in nonwovens part IV: Flow field analysis, Textile Research Journal, 67(3),181-187.
  • 20. Lien, H., C., Liu, C., H., (2006), A method of inspecting non-woven basis weight using the exponential law of absorption and image processing, Textile Research Journal, 76, 547-558.
  • 21. Tunak, M., Antoch., J., Kula., J., (2014), Estimation of fiber system orientation for nonwoven and nano fibrous layers: local approach based on image analysis. Textile Research Journal, 84(9), 989-1006.
  • 22. Maity, S., Singha, K., Singha, M., (2013), Three-dimensional microimage analysis of nonwoven structure, Frontiers in Science, 3(1): 22-26.
  • 23. Chhabra, R., (2003), Nonwoven Uniformity - Measurements Using Image Analysis, International Nonwovens Journal, 12(1): 43-50.
  • 24. Nohut, S., Taşcan, M., Akgobek., Ö., (2015), Estimation of Areal Weight, Grab Tensile Strength, and Elongation at Break of PP Spunbond Nonwovens using Digital Image Analysis and Artificial Neural Networks, Journal of Engineered Fabrics & Fibers (JEFF), 10(2): 155-162.
  • 25. Tascan, M., Nohut, S., (2015), Nondestructive Prediction of Areal Weight, Grab Tensile Strength and Elongation at Break of Polypropylene (PP) Spunbond Nonwoven Fabrics Using Digital Image Analysis, Textile and Apparel, 25(1): 24-32.
  • 26. Yekrang, J., Sarijeh, B., Semnani, D., (2015), Prediction of heat transfer and air permeability properties of light weight nonwovens using artificial intelligence, Indian Journal of Fiber & Textile Research, 40, 373-379.
  • 27. Debnath, S., (2011), Modelling of Needle-Punched Nonwoven Fabric Properties Using Artificial Neural Network, In: Artificial Neural Networks-Industrial and Control Engineering Applications, Published by InTech, 65.
  • 28. Chen, T., Zhang, C., Li, L., Chen, X., (2008), Simulating the drawing of spunbonding nonwoven process using an artificial neural network technique, The Journal of the Textile Institute99(5), 479-488.
  • 29. Bo, Z., (2009), Using Artificial Neural Network Model on Studying Fiber Diameter of Spunbonding Nonwovens: Comparison with Mathematical Empirical Statistical Method Model, Second International Conference on Intelligent Computation Technology and Automation, 423-426.
  • 30. Chen, T., Zhao, S., Wu., L., (2010), Simulating the Filtration Properties of Nonwoven Fabrics: Comparison of Artificial Neural Network, Statistical and Grey Models, Applied Mechanics and Materials, 20(23), 1021-1027.
  • 31. Cay, A., Vassiliadis, S., Maria., R., (2007), Prediction of the air permeability of woven fabrics using neural networks, International Journal of Clothing Science and Technology ,19(1), 18-35.
  • 32. Zupin, Ž., Hladnik, A., Dimitrovski, K., (2012), Prediction of onelayer woven fabrics air permeability using porosity parameters, Textile Research Journal, 82(2), 117-128.
  • 33. Matusiak, M., (2015), Application of artificial neural networks to predict the air permeability of woven fabrics, Fibres & Textiles in Eastern Europe, 109, 41-48.
  • 34. Ozturk, M., K., Nergis, B., Candan, C., (2016), A Comparative Study on Air Permeability Properties of Multilayered Nonwoven Structures, World Academy of Science, Engineering and Technology, International Journal of Chemical, Molecular, Nuclear, Materials and Metallurgical Engineering, 10(12), 1510-1513.
  • 35. Çelik, H., İ., (2017), Determination of Air Permeability Property of Air-Laid Nonwoven Fabrics Using Regression Analyses, Periodicals of Engineering and Natural Sciences, 5(2), 210-216.
  • 36. Harahck, R., M., (1973), Texture feature for image classification, IEEE Trans. on System, Man and Cybern, 3(6), 610- 621.
  • 37. Haralick, R., M., (1979), Statistical and structural approaches to texture, Proceedings of the IEEE, 67(5), 786–804.
  • 38. Lin, J., J., (2002), Applying a Co-occurrence Matrix to Automatic Inspection of Weaving Density for Woven Fabrics, Textile Research Journal, 72 (6), 486-490.
  • 39. Gadelmawla, E., S., (2004), A vision system for surface roughness characterization using the gray level co-occurrence matrix, NDT & E International, 37 (7), 577-588.
  • 40. Albrecht, W., Fuchs, H., Kittelmann, W., (2003) Nonwoven Fabrics, WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim, 561.
  • 41. Jeon, S., Y., Na, W., J., Choi, Y., O., Lee, M., G., Kim, H., E., Yu, W., R., (2014), In situ monitoring of structural changes in nonwoven mats under tensile loading using X-ray computer tomography. Composites Part A: Applied Science and Manufacturing, 63, 1-9.
  • 42. Soltani, P., Zarrebini, M., Laghaei, R., Hassanpour, A., (2017), Prediction of permeability of realistic and virtual layered nonwovens using combined application of X-ray μCT and computer simulation, Chemical Engineering Research and Design, 124, 299- 312.
  • 43. Gültekin, E., Çelik, H., İ., Nohut, S., Elma, S., K., (2020), Predicting air permeability and porosity of nonwovens with image processing and artificial intelligence methods, The Journal of The Textile Institute, 1-11.
Tekstil ve Mühendis-Cover
  • ISSN: 1300-7599
  • Yayın Aralığı: Yılda 4 Sayı
  • Başlangıç: 1987
  • Yayıncı: TMMOB Tekstil Mühendisleri Odası
Sayıdaki Diğer Makaleler

Spunlace (Su Jeti ile Bağlama) Teknolojisi ile Üretilen Dokusuz Yüzeylerin Morfolojik Özelliklerinden Bazı Performans Özelliklerinin Yapay Zeka ile Tahminlenmesi

Elif GÜLTEKİN, Halil İbrahim ÇELİK, Hatice Nida CİVAN, Eyüp Ali SATIL

CHARACTERIZATION OF CHEMICAL-TREATED AND GAMMA IRRADIATED PINEAPPLE LEAF FABRIC/EPOXY COMPOSITES: SURFACE STRUCTURE AND PHYSICO-MECHANICAL PROPERTIES

Md. MONIRUZZAMAN, Mohammad ABDUL JALIL, Md. NAZMUL HOSSAIN, Ismail HOSSAIN, Md. MANIRUZZAMAN

TRANSFORMABLE DRESS PRACTICES

NEŞE YAŞAR ÇEĞİNDİR, Ceren ÖZ

BORNOZ ÜRÜN GELİŞTİRMEDE ANALİTİK HİYERARŞİ PROSESİ VE KALİTE FONKSİYON GÖÇERİMİ UYGULAMASI

Derya TATMAN

DOKUMA KUMAŞLARIN BİLGİSAYAR DESTEKLİ TASARIMI VE ÜRETİMLERİNİN PLANLANMASI

Güngör BAŞER

MARKA TERCİHLERİ VE MARKALI GİYSİLERİ SATIN ALMA SIKLIĞI: DAKKA ŞEHRİ, BANGLADEŞ ÜZERİNE BİR ARAŞTIRMA

Marzia DULAL, Md SYDUZZAMAN

STUDY ON THE EFFECT OF AIR SUCTION PRESSURE ON THE QUALITY OF COMPACT YARN BY CHANGING THE FREQUENCY OF INVERTER

Amit CHAKRABORTTY, Asif HOSSAIN, Joyjit GHOSH

GAMA IŞINI VE KİMYASAL İŞLEM UYGULANMIŞ ANANAS LİFLERİNDEN ÜRETİLEN KUMAŞ/ EPOKSİ KOMPOZİTLERİN KARAKTERİZAYONU: YÜZEY YAPISI VE FİZİKO MEKANİK ÖZELLİKLERİ

Md. MONIRUZZAMAN, Mohammad ABDUL JALIL, Md. NAZMUL HOSSAIN, Ismail HOSSAIN, Md. MANIRUZZAMAN

Bitkisel Kaynaklı Biyopolietilenin Biyokompozit Üretiminde ve Polimer Karışımlarında Kullanımı

Mustafa ÇELİK, Eylem KILIÇ

Bornoz Ürün Geliştirmede Analitik Hiyerarşi Prosesi ve Kalite Fonksiyon Göçerimi Uygulaması

Derya TATMAN