TUNGSTEN VE BARYUM SÜLFAT KATKILI KAPLANMIŞ KUMAŞLARIN X-RAY ZAYIFLATMA VE EĞİLME DAYANIMI ÖZELLİKLERİNİN İNCELENMESİ

Bu çalışmada, tekstil bazlı kurşun içermeyen kalkanlama malzemelerinin x-ray atenuasyon ve eğilme dayanımı özellikleri incelenmiştir. Kurşuna alternatif, tungsten ve baryum sülfat tozları radyopak katkı olarak tekstil kaplaması içerisinde kullanılmıştır. Pamuklu kumaşlar ağırlıksal olarak eşit miktarda (%60) tungsten ve baryum sülfat katkı içeren silikon kauçuk ile kaplanmıştır. Numunelerin x-ray atenuasyon oranları medikal korunma standartları göz önünde bulundurularak 80kV, 100kV ve 150kV tüp voltajı seviyelerinde ölçülmüştür. Bunun yanı sıra, tekstil yüzeyi üzerindeki kaplamanın tekrarlı eğilmelere karşı dayanımı gözlemlenmiş ve yüzeyler SEM ve EDS teknikleri kullanılarak değerlendirilmiştir. Sonuçlara göre tungsten katkı içeren silikon kauçuk kaplamalı numuneler baryum sülfat-silikon kauçuk kaplamalılara göre aynı kalınlıkta daha iyi atenuasyon oranlarına sahip olmuştur. Bununla beraber, baryum-silikon kauçuk kaplamalarda eğilme testi sonucunda yüzeyde çatlaklar meydana gelirken, tungsten-silikon kauçuk kaplamalı kumaşlar yüksek eğilme dayanımı göstermiştir

INVESTIGATION OF X-RAY ATTENUATION AND THE FLEX RESISTANCE PROPERTIES OF FABRICS COATED WITH TUNGSTEN AND BARIUM SULPHATE ADDITIVES

In this paper, the x-ray attenuation and the flex resistance properties of lead free, textile based shielding materials were investigated. As an alternative to lead, tungsten and barium sulphate powders were used as radiopaque additives in textile. The cotton fabrics were coated with silicone rubber that contains tungsten and barium sulphate powders in equal weight fractions (60%). X-ray attenuation ratios of samples were measured at 80kV, 100kV, and 150kV tube voltages in accordance with medical protection standards. Besides, the durability of the coatings on textile surface against repetitive folding was observed and the surfaces were examined by SEM and EDS techniques. The results showed that the tungsten additives in silicone rubber coating had better attenuation ratios when compared to the samples coated with barium sulphate-silicone rubber at similar thicknesses. In addition to this, tungsten-silicone rubber coated fabrics showed high flex resistance, where some cracks were observed on barium sulphate-silicone rubber coating

___

  • 1. Schueler, B.A., 2010, “Operator Shielding: How and Why?”, Tech Vasc Interventional Rad, 13, 167-171.
  • 2. Martinez, T.P., Cournoyer M.E., 2001, “Lead substitution and elimination study”, Journal of Radioanalytical and Nuclear Chemistry, Vol. 249, No. 2, 397– 402.
  • 3. Scuderi, G.J. et al., 2006, “Evaluation of non–lead based protective radiological material in spinal surgery”, The Spine Journal, 6, 577–582.
  • 4. Zuguchi, M. et al., 2008, “Usefulness of non-lead aprons in radiation protection for physicians performing interventional procedures” Rad Prot Dosi, Vol. 131, No. 4, pp. 531–534.
  • 5. Oyar, O. et al., 2011, “How protective are the lead aprons we use against ionizing radiation?” Diagn Interv Radiol 18(2), 147-52. 6. Duran, E.B., Philips B., 2003 (updated 2014), "Rejection criteria for defects in lead apparel used for radiation protection of X-ray workers." Radiation Protection Services, British Columbia Centre for Disease Control.
  • 7. Nambiar, S., Osei, E. K., Yeow, J.T., 2013, “Polymer nanocompositebased shielding against diagnostic xrays”, Journal of Applied Polymer Science, 127(6), 4939-4946.
  • 8. Kim, S.C. et al., 2012, “Medical radiation shielding effect by composition of barium compounds”, Annals of Nuclear Energy, 47 1–5.
  • 9. Sastri, V.R., 2010, Chapter 5. “Polymer additives used to enhance material properties for medical device applications”, Plastics in Medical Devices, 55-72.
  • 10. El-Sarraf, M.A. et al., 2013, “Insulating epoxy/barite and polyester/barite composites for radiation attenuation”, App Rad and Iso, 7918–24.
  • 11. Kobayashi, S. et al., 1997, “Tungsten alloys as radiation protection materials”, Nuc Inst and Met in Physics Res, A 390, 426-430. 12. Yue, K. et al., 2009, “A new lead-free radiation shielding material for radiotheraphy radiation protection dosimetry”, Vol. 133, No. 4, pp. 256–260.
  • 13. Agency for Toxic Substances and Disease Registry, Summary Data For 2015 Priority List of Hazardous Substance. http://www.atsdr.cdc.gov/spl/
  • 14. McCaffrey, J. P., et al., 2007, Radiation attenuation by lead and nonlead materials used in radiation shielding garments. Medical physics, 34.2: 530-537.
  • 15. Morton, M., 1999, Chapter 13, Silicone Rubber, Rubber Technology, Springer Science, Business Media Dordrecht, J. C. 375-409.
  • 16. David R., Lide, 1993, CRC Handbook of Chemistry and Physics, 1993, 73rd edition, CRC Press, Boca Raton p.706,734,746.
  • 17. IEC 61267: 2005. Medical diagnostic X-ray equipment - Radiation conditions for use in the determination of characteristics.
  • 18. Hubbell, JH. et al., 1995, “Tables of X-ray mass attenuation coefficients and mass energy-absorption coefficients 1 keV to 20 MeV for elements z = 1 to 92 and 6048 additional substances of dosimetric interest.” Technical Report NISTIR-5632.
  • 19. ISO 5402-1:2011 Leather, Determination of flex resistance, Part 1: Flexometer method
  • 20. Berger, M. et al., 2010, XCOM: photon cross sections database at: http://www.nist.gov/pml/data/xcom/index.cfm.
  • 21. Finnerty, M., Brennan, P.C., 2005, “Protective aprons in imaging departments: manufacturer stated lead equivalence values require validation”, Eur Radiol, 15, 1477–1484.
  • 22. Fu, S.Y. et al., 2008, “Effects of particle size, particle/matrix interface adhesion and particle loading on mechanical properties of particulate–polymer composites” Composites: Part B 39, 933–961.
Tekstil ve Konfeksiyon-Cover
  • ISSN: 1300-3356
  • Yayın Aralığı: Yılda 4 Sayı
  • Yayıncı: Ege Üniversitesi Tekstil ve Konfeksiyon Araştırma & Uygulama Merkezi