P(NIPAM–co-MAM) Kopolimer Bitim İşlemi ile Sıcaklığa ve pH'a Duyarlı Akıllı Pamuklu Kumaşların Geliştirilmesi

Bu çalışmada, ısıya-duyarlı ve pH’a duyarlı özelliklere sahip çift uyarıya duyarlı akıllı polimer ve pamuklu kumaşların üretilmesi amaçlanmıştır. Bu amaç doğrultusunda farklı oranlarda NIPAM/MAM monomerleri içeren poli(N-izopropilakrilamid-ko-metakrilamid) P(NIPAM-ko-MAM) kopolimerleri sentezlendi. Analiz sonuçları, kopolimerlerin serbest radikal katılma polimerizasyon yöntemi ile başarılı bir şekilde sentezlendiğini ve LCST değerlerinin 33°C ile 41°C arasında değiştiğini göstermiştir. Sentezlenen kopolimerler arasından seçilen numune çift banyolu emdirme yöntemi ile kumaşa uygulanmış ve kumaşın ısıya duyarlı ıslanma özelliği, ıslanma süresi testi, su alma testi ve temas açısı ölçümü ile incelenmiştir. Test sonuçları, kumaşın hidrofilik karakterinin, sıcaklıktaki değişime bağlı olarak tersinir bir şekilde hidrofobik karaktere dönüştüğünü göstermiştir. Kumaş, sıcaklığa bağlı olarak hidrofilik karakterinin yanı sıra gözenek boyutunu değiştirerek su buharı geçirgenliğini yönetebilmektedir. Ayrıca kumaşların S.aureus bakterilerine karşı güçlü antibakteriyel aktiviteye sahip olduğu sonucuna varılmıştır.

Development of Temperature and pH Responsive Smart Cotton Fabrics by P(NIPAM–co-MAM) Copolymer Finishing

In this study, fabrication of dual responsive smart polymer and cotton fabrics with thermo-responsive and pH responsive properties was aimed. For this aim, poly(N-isopropylacrylamide-co-methacrylamide) P(NIPAM-co-MAM) copolymers containing different ratio of NIPAM/MAM monomers were synthesized. Analysis results showed that the copolymers were synthesized successfully by free radical addition polymerization method and their LCST values ranges from 33°C to 41°C. A selected sample of the synthesized copolymers was applied to fabric via double-bath impregnation method and thermo-responsive wetting property of the fabric was examined via wetting time and water uptake tests, contact angle measurement. The test results indicated that hydrophilic character of the fabric changed to the hydrophobic character reversibly depending on change in temperature. The fabric could manage water vapor permeability via changing pore size as well as their hydrophilic character depending on temperature. Besides, it was concluded that the fabrics had strong antibacterial activity against S.aureus bacteria.

___

  • 1. Dragan J. 2016. Polymer-Based Smart Coatings for Comfort in Clothing. Tekstilec. 59(2), 107-114.
  • 2. Korkmaz Memiş, N., S. Kaplan. 2020. “Dual Responsive Wool Fabric by Cellulose Nanowhisker Reinforced Shape Memory Polyurethane”. Journal of Applied Polymer Science 137(19):48674. doi:10.1002/app.48674.
  • 3. Crespy D., Rossi RM. 2007. Temperature‐responsive polymers with LCST in the physiological range and their applications in textiles. Polymer International 56(12), 1461-1468.
  • 4. Chatterjee S., Hui CL. 2019. Review of stimuli-responsive polymers in drug delivery and textile application. Molecules 24(14), 2547.
  • 5. Xiao M., González E., Monterroza AM., Freya M. 2017. Fabrication of thermo-responsive cotton fabrics using poly(vinylcaprolactam-co-hydroxyethyl acrylamide) copolymer. Carbohydrate Polymers 174, 626–632.
  • 6. Zhang Q., Weber C., Schubertcd US., Hoogenboom R. 2017. Thermoresponsive polymers with lower critical solution temperature: from fundamental aspects and measuring techniques to recommended turbidimetry conditions. Materials Horizons 4, 109.
  • 7. Demirbag S., Alay Aksoy S. 2019. Fabrication of thermoresponsive cotton graft PNIPAM fabric. Journal of Textile Institute 110, 171-178.
  • 8. Ter Schiphorst J., Van den Broek M., T. de Koning, Murphy JN., Schenning APHJ., Esteves ACC. 2016. Dual light and temperature responsive cotton fabric functionalized with a surface-grafted spiropyran–NIPAAm-hydrogel. Journal of Materials Chemistry 4,8676–8681.
  • 9. Zhao Y., Wen J., Sun H., Pan D., Huang Y., Bai Y., Shao L. 2020. Thermo-responsive separation membrane with smart anti-fouling and self-cleaning properties. Chemical Engineering Research and Design 156, 333–342.
  • 10. Liu H., Zhu J., Hao L., Jiang Y., Van der Bruggen B., Sotto A., Shen J. 2019.Thermo- and pH-responsive graphene oxide membranes with tunable nanochannels for water gating and permeability of small molecules. Journal of Membran Science 587, 117163.
  • 11. Lübben JF., Keck A., Kemajou CT., Bräuning M., Frick JE., Melnikov J. 2017.Functionalization of textiles with thermoresponsive polymers. Journal of Fashion Technology & Textile Engineering S4, 016.
  • 12. Zhang Q., Chen YY., Guan SL., Fang Q. 2015. Smart cleaning cotton fabrics cross-linked with thermo-responsive and flexible poly(2-(2-methoxyethoxy)ethoxyethyl methacrylate-co-ethylene glycol methacrylate). RSC Advances 5, 38382–38390.
  • 13. Chen T., Fang Q., Zhong Q., Chen Y., Wang J.2015. Synthesis and thermosensitive behavior of polyacrylamide copolymers and their applications in smart textiles. Polymers 7, 909–920.
  • 14. Tourrette A., Geyter ND., Jocic D., Morent R.,. Warmoeskerken MMCG, Leys C., Incorporation of poly (n-isopropylacrylamide)/chitosan microgel onto plasma functionalized cotton fibre surface. Colloids and Surfaces A: Physicochemical and Engineering Aspects 352, 126–135.
  • 15. Sahle FF., Giulbudagian M., Bergueiro J., Lademann J., Calderón M. 2017. Dendritic polyglycerol and N-isopropylacrylamide based thermoresponsive nanogels as smart carriers for controlled delivery of drugs through the hair follicle. Nanoscale 9, 172–182.
  • 16. Zhao C., Zhuang X., He P., Xiao C., He C., Sun J., Jing X. 2009. Synthesis of biodegradable thermo- and pH-responsive hydrogels for controlled drug release. Polymer 50(18), 4308–4316.
  • 17. Ohya S., Nakayama Y., Matsuda T. 2001.Thermoresponsive Artificial Extracellular Matrix for Tissue Engineering:  Hyaluronic Acid Bioconjugated with Poly(N-isopropylacrylamide) Grafts. Biomacromolecules 2(3), 856-863.
  • 18. Nagase K., Okano T., Kanazawa H. 2018. Poly (N-isopropylacrylamide) based thermoresponsive polymer brushes for bioseparation, cellular tissue fabrication, and nano actuators. Nano-Structures & Nano-Objects 16, 9-23.
  • 19. Farooqi ZH., Khan HU., Shah SM., Siddiq M. 2017. Stability of poly (N-isopropylacrylamide-co-acrylic acid) polymer microgels under various conditions of temperature, pH and salt concentration. Arabian Journal of Chemistry 10(3), 329-335.
  • 20. Haddow P., McAuley WJ., Kirton SB., Cook MT. 2020. Poly(N-isopropyl acrylamide) – poly(ethylene glycol) – poly(N-isopropyl acrylamide) as a thermoreversible gelator for topical administration. Materials. Advances 1(3) 371.
  • 21. Yang L., Zhang J., He J., Zhang J., Gan Z. 2015. Synthesis and characterization of temperature-sensitive cellulose-graft-poly(N-isopropylacrylamide) copolymer. Chinese Journal of. Polymer Science 33, 1640-1649.
  • 22. Sarwan, T., Kumar, P., Choonara, Y. E., & Pillay, V. 2020. Hybrid thermo-responsive polymer systems and their biomedical applications. Frontiers in Materials 7, 73.
  • 23. Reyes-Ortega F. 2014. pH-responsive polymers: properties, synthesis and applications. Maria Rosa Aguilar (Ed.), Smart Polymers And Their Aplication. Spain: Woodhead Publishing, 45-92.
  • 24. Özkahraman B. 2014. Usage of Polymeric Hydrogels and Microgels in Drug Release Applications, PhD Thesis, University of Istanbul, Istanbul.
  • 25. Grainger SJ., El-Sayed MEH. 2010. Stimuli-Sensitive Particles for Drug Delivery. In E. Jabbari and A. Khademhosseini (Ed). Biologically-Responsive Hybrid Biomaterials. Singapore: World Scientific, 171-190.
  • 26. Şimşek, C., 2016. Investigation of The In Vitro Drug Release Kinetics Of PNIPAAm Hydrogels, M.Sc Thesis, University of Istanbul, Istanbul.
  • 27. Bashari A., Hemmatinejad N., Pourjavadi A. 2013. Surface Modification Of Cotton Fabric with Dual-Responsive PNIPAMm/Chitosan Nano Hydrogel. Polymers for Advanced Technologies.24, 797–806.
  • 28. Glampedaki P., Calvimontes A., Dutschk, V. Warmoeskerken, MM. 2012. Polyester textile functionalization through incorporation of pH/thermo-responsive microgels. Part II: polyester functionalization and characterization. Journal of materials science. 47(5), 2078-2087.
  • 29. Chen S., Yuan L., Li Q., Li J., Zhu X., Jiang Y., Sha Q., Yang X., Xin JH., Wang J., Stadler FJ., Huang P. 2016. Durable antibacterial and nonfouling cotton textiles with enhanced comfort via zwitterionic sulfopropylbetaine coating. Small 12(26), 3516.
  • 30. Hengrui Y. 2012. A Smart Temperature Responsive Polymeric System For Textile Materials, Phd Thesis The Hong Kong Polytecnic University.
  • 31. Lavric PK, Warmoeskerken MMCG, Jocic D.2012. Functionalization of cotton with poly-nipamm/chitosan microgel: Part I. stimuli-responsive moisture management properties. Cellulose 19, 257–271.
  • 32. Jocic D, Tourrette A, Glampedaki P, Warmoeskerken MMCG. 2009. Application of temperature and pH responsive microhydrogels for functional finishing of cotton fabric. Materials Technology 24, 14-23.
  • 33. Besen B, Balcı O, Orhan M, Gunesoglu C., Tatli II. 2015. An Investigation on antibacterial activities of nonwovens treated with ozonated oils, Journal of Textiles and Engineer 22(100), 25-31.
  • 34. Derkaoui S, Belbachir M, Haoue S, Zeggai FZ., Rahmouni A., Ayat M. 2019. Homopolymerization of methacrylamide by anionic process under effect of maghnite-naþ (algerian MMT). Journal of Organometallic Chemistry 893, 52-60.
  • 35. Chung C, Lee M., Choe EK. 2004. Characterization of cotton fabric scouring by FT-IR ATR spectroscopy. Carbohydrate Polymer 58, 417-420.
  • 36. Yang H., Esteves ACC., Zhu H., Wang D., Xin JH. 2012. In-situ study of the structure and dynamics of thermo-responsive PNIPAMm grafted on a cotton fabric. Polymer 53, 3577-3586.
  • 37. Soleimani-Gorgani A, Karami Z. 2016. The effect of biodegradable organic acids on the improvement of cotton ink-jet printing and antibacterial activity. Fibers and Polymer 17, 512-520.
  • 38. Alay-Aksoy S., Genç E. 2015. Functionalization of cotton fabrics by esterification cross-linking with 1,2,3,4-butanetetracarboxylic acid (BTCA). Cellulose Chemistry Technology 49, 405-413.
  • 39. Save NS., Jassal M. Agrawal AK. 2005. Smart breathable fabric. Journal of Industrial Textiles 34, 139-155.
  • 40. Madhavan V, Lichtin NN. Hayon E. 1975. Protonation reactions of electron adducts of acrylamide derivatives. a pulse radiolytic-kinetic spectrophotometric study. Journal of the American Chemical Society 97(11), 2989-2995.
  • 41. Qi K., Wang X., Xin JH. 2011. Photocatalytic self-cleaning textiles based on nanocrystalline titanium dioxide. Textile Research Journal 81, 101–110.
  • 42.Tozum MS.2014. Determination of Thermo-regulating and comfort properties of the fabrics treated with heat storing microcapsule. Master's Thesis, Suleyman Demirel University.
  • 43.Bulut Y., Sular V. 2015. General properties and performance tests of fabrics produced by coating and lamination techniques. Journal of Textiles and Engineer 70, 5-16.
  • 44. Hussain T., Ali S., Qaiser F. 2010. Predicting the crease recovery performance and tear strength of cotton fabric treated with modified N‐methylol dihydroxyethylene urea and polyethylene softener. Coloration Technology 126(5), 256-260.