LOW VELOCITY IMPACT RESPONSE OF BIODEGRADABLE PLA COMPOSITES REINFORCED BY RECLAIMED COTTON PREFORMS

Çevresel farkındalık ile birlikte, biyobozunabilir polimerler ve liflerden üretilen biyobozunabilir kompozitler daha fazla dikkat çekmiştir. Polilaktik asit (PLA), geri dönüşümleri zor veya ekonomik olmadığından dolayı biyolojik olarak bozunamayan geleneksel polimerlere bir alternatif sunmaktadır. Doğal bir lif olarak, pamuk, yeşil kompozitlerin takviyesi için oldukça çekicidir. Bu çalışmada, PLA ile ham pamuk iplik ve geri kazanılmış pamuk iplikten üretilen örme preformlardan, basınçlı kalıplama metodu ilei biyobozunabilir kompozitler elde edilmiştir. Farklı preform yapılarından oluşan kompozitlerin darbe özellikleri test edilmiştir. PLA/geri kazanılmış pamuk kompozitin gelecek vaadeden darbe özelliği, geri kazanılmış liflerin biyobozunabilir kompozitlerde kullanım potansiyelini göstermektedir. Ayrıca düşük hızlı darbe deneyinin sonuçları iplik mukavemeti ve ilmek boyutundaki değişimlerin PLA/pamuk kompozitin özelliklerinde etkili olduğunu göstermiştir

GERİ KAZANILMIŞ PAMUK PREFORMLAR İLE TAKVİYELENDİRİLMİŞ BİYOBOZUNABİLEN PLA KOMPOZİTLERİN DÜŞÜK İVMELİ DARBE TEPKİLERİ

Along with the environmental awareness, biodegradable composites, produced from biodegradable polymers and fibres, have gained more attention. Polylactic acid (PLA) offers a possible alternative to the traditional non-biodegradable polymers since their recycling is difficult or not economical. As being a natural fibre, cotton is very attractive in reinforcement of green composites. In this study biodegradable composites were obtained from PLA and knitted preforms manufactured from raw cotton and reclaimed cotton, by using compression molding method. Impact properties of composites comprised of different preform structures were tested. The promising impact property of reclaimed cotton/PLA composite shows the potential of reclaimed fibres in the usage of biodegradable composites. Also the results of the low velocity impact tests showed that variation in yarn twist and loop length has an influence on cotton/PLA composite characteristics

___

  • 1. Bax B. and Mussig J., 2008, “Impact and Tensile Properties of PLA/Cordenka and PLA/Flax Composites”, Composites Science and Technology, Vol: 68, pp: 1601–1607.
  • 2. Bajpai P.K., Singh I. and Madaan J., 2012, “Development and Characterization of PLA-Based Green Composites: A Review”, Journal of Thermoplastic Composite Materials, pp: 1-30.
  • 3. Nampoothiri K.M., Nair N.R. and John R.P., 2010, “An Overview of The Recent Developments In Polylactide (PLA) Research”, Bioresource Technology, Vol: 101, pp: 8493–8501.
  • 4. Mohanty A.K., Misra M., and Drzal L.T., 2002, “Sustainable Bio-Composites from Renewable Resources: Opportunities and Challenges in the Green Materials World”, Journal of Polymers and the Environment, Vol: 10, pp: 19-26.
  • 5. John M.J. and Thomas S., 2008, “Biofibres and Biocomposites”, Carbohydrate Polymers, Vol: 71, pp: 343–364.
  • 6. Almeida J.R.M., 2001, “Analysis of Cost and Flexural Strength Performance of Natural Fiber Polyester Composites”, Polymer Plastics Technology and Engineering, Vol: 40(2), pp: 205–215.
  • 7. Müssig, J., 2008, “Cotton Fibre Reinforced Thermosets Versus Ramie Composites: A Comparative Study Using Petrochemical and Agro-Based Resins”, Journal of Polymers and Environment, Vol: 16(2), pp: 94-102.
  • 8. Garlotta D., 2001, “A Literature Review of Poly(Lactic Acid)”, Journal of Polymers and the Environment, Vol: 9(2), pp: 63-83.
  • 9. Netravali A.N. and Chabba S., 2003, “Composites Get Greener”, Materials Today, Vol: 4, pp: 22-29.
  • 10. Yan L., Chouw N. and Jayaraman K., 2014, “Flax Fibre and Its Composites – A Review”, Composites: Part B, Vol: 56, pp: 296–317.
  • 11. Koronis G., Silva A. and Fontul M., 2013, “Green Composites: A Review of Adequate Materials for Automotive Applications”, Composites: Part B, Vol: 44, pp: 120–127.
  • 12. Khalil H.P.S.A., Bhat A.H. and Yusra A.F.I., 2012, “Green Composites from Sustainable Cellulose Nanofibrils: A Review”, Carbohydrate Polymers, Vol: 87, pp: 963– 979
  • 13. Aji I.S., Sapuan S.M., Zainudin E.S. and Abdan K., 2009, “Kenaf Fibers As Reinforcement for Polymeric Composites: A Review”, International Journal of Mechanical and Materials Engineering, Vol: 4(3), pp: 239-248.
  • 14. Cheung H., Ho M., Lau K., Cardon F. and Hui D., 2009, “Natural fibre-reinforced composites for bioengineering and environmental engineering applications”, Composites: Part B, Vol: 40, pp: 655–663.
  • 15. Pandey J. K., Ahn S. H., Lee C.S., Mohanty A.K. and Misra M., 2010, “Recent Advances in the Application of Natural Fiber Based Composites”, Macromolecular Materials And Engineering, Vol: 295, pp: 975-989.
  • 16. Graupner N., 2008, “Application of Lignin As Natural Adhesion Promoter In Cotton Fibre-Reinforced Poly(Lactic Acid) (PLA) Composites”, Journal Of Materials Science, Vol: 43, pp: 5222-5229.
  • 17. Kamath M. G., Bhat G. S., Parikh D. V. and Mueller D., 2005, “Cotton fiber nonwovens for automotive composites”, International Nonwovens Journal, Vol: 2, pp: 34-40.
  • 18. Aydın M., Tozlu H., Kemaloglu S., Aytac A. and Ozkoc G., 2011, “Effects of Alkali Treatment on the Properties of Short Flax Fiber–Poly(Lactic Acid) EcoComposites”, Journal of Polymers and the Environment, Vol: 19, pp: 11-17.
  • 19. Mukhopadhyay S. and Fangueiro R., 2009, “Physical Modification of Natural Fibres and Thermoplastic Films for Composites-A Review”, Journal of Thermoplastic Composite Materials, Vol: 22, pp:135-162.
  • 20. Kabir M.M., Wang H., Lau K.T. and Cardona F., 2012, “Chemical Treatments On Plant-Based Natural Fibre Reinforced Polymer Composites: An Overview”, Composites: Part B, Vol: 43 pp: 2883–2892.
  • 21. Baucom J.N. and Zikry M.A., 2005, “Low-Velocity İmpact Damage Progression İn Woven E-Glass Composite Systems”, Composites Part A, Vol: 36, pp:658-664.
  • 22. Hosur M.V., Abdullah M., Jeelani S., 2005, “Studies On The Low-Velocity İmpact Response Of Woven Hybrid Composites”, Composite Structures, Vol:67, pp:253-262.
  • 23. https://en.wikipedia.org/wiki/Cotton_recycling, (Access Date: March 2016)
Tekstil ve Konfeksiyon-Cover
  • ISSN: 1300-3356
  • Yayın Aralığı: Yılda 4 Sayı
  • Yayıncı: Ege Üniversitesi Tekstil ve Konfeksiyon Araştırma & Uygulama Merkezi
Sayıdaki Diğer Makaleler

FARKLI NAYLON İPLİKLERİNDEN MAMUL ÖRME KUMAŞLARIN ISLANMA VE KURUMA DAVRANIŞLARI

Sena CIMILLI DURU, Cevza CANDAN

GERİ KAZANILMIŞ PAMUK PREFORMLAR İLE TAKVİYELENDİRİLMİŞ BİYOBOZUNABİLEN PLA KOMPOZİTLERİN DÜŞÜK İVMELİ DARBE TEPKİLERİ

Gülşah PAMUK, Uğur KEMİKLİOĞLU, Onur SAYMAN, Okan ÖZDEMİR

LOW VELOCITY IMPACT RESPONSE OF BIODEGRADABLE PLA COMPOSITES REINFORCED BY RECLAIMED COTTON PREFORMS

Okan ÖZDEMİR, Uğur KEMİKLİOĞLU, Gülşah PAMUK, Onur SAYMAN

MOORA-BASED TAGUCHI OPTIMIZATION FOR SELECTION OF MURATA VORTEX SPINNER MACHINE PARAMETERS

Esra AKGÜL, Hüseyin Gazi TÜRKSOY, Emel KIZILKAYA AYDOĞAN, Diyar AKAY

AN ECOLOGICAL APPROACH FOR THE SURFACE MODIFICATION OF ARAMID FIBERS

Mehmet SARIKANAT, Aslı DEMİR, Ebru BOZACI, Tülay GÜLÜMSER

ARAMİD LİFLERİNİN YÜZEY MODİFİKASYONU İÇİN EKOLOJİK BİR YAKLAŞIM

Aslı DEMİR, Ebru BOZACI, Tülay GÜLÜMSER, Mehmet SARIKANAT

THE EFFECTS OF SPINNING SYSTEM AND BLENDING RATIO ON QUALITY OF SILK/COTTON BLENDED YARNS

Memik Bünyamin ÜZÜMCÜ, Hüseyin KADOĞLU

THE EFFECT OF PLASMA TREATMENT ON THE DYEABILITY OF SILK FABRIC BY USING PHYTOLACCA DECANDRA L. NATURAL DYE EXTRACT

Nigar MERDAN, Dilek KUT, Habip DAYIOĞLU, Mehmet KILINÇ, Seyda EYÜPOĞLU

INVESTIGATING THE EFFECTS OF DIFFERENT SOFTENERS ON PILLING PROPERTIES AND DURABILITY TO WASHING OF BAMBOO KNITTED FABRICS

Arif Taner ÖZGÜNEY

ORMOSİL’LER İLE MODİFİYE EDİLEN ZnO, Al2O3, TiO2 and ZrO2 NANOPARTİKÜLLERİNİN APLİKASYONU İLE SU İTİCİ PAMUKLU KUMAŞLARIN GELİŞTİRİLMESİ

Nurhan ONAR, Gülfem METE