investigation of the effects of pumice stone powder and polyacrylic ester based material on thermal insulation of polypropylene fabrics

Bu çalışmada polipropilen(PP) kumaşların ısı izolasyonu ve adhezyon özelliklerinin geliştirilmesi amaçlanmıştır. Çalışmada, tekstüre PP atkı iplikten, içi boş PP elyaftan elde edilmiş tekstüre atkı iplikten ve PP elyaftan elde edilmiş dokusuz yüzey kumaş olmak üzere üç farklı PP kumaş kullanılmış, her kumaşın ısı izolasyonu özelliklerini geliştirmek için kumaşların bir yüzü farklı konsantrasyonlarda ponza taşı tozu içeren poliüretan bazlı materyal ile kaplanmıştır. Ardından kumaşların diğer yüzeyleri kumaşlara adhezyon özellik kazandırmak amacı ile poliakrilik ester bazlı madde ile kaplanmıştır. Kumaşların ısı iletim katsayılarına kumaş türünün, ponza taşı konsantrasyonun ve poliakrilik ester bazlı yapının etkisi ayrıca poliakrilik ester bazlı yapının kumaşların adhezyon özelliklerine etkisi incelenmiştir. Sonuçlar ponza taşı konsantrasyonu artışının ve poliakrilik esterin kullanımının numunelerin ısı iletim katsayılarının azalmasına neden olduğunu göstermektedir. Ayrıca poliakrilik ester bazlı yapının kullanımı, kumaşlara her yüzeye karşı adhezyon özellik kazandırmıştır.

Polipropilen kumaşların ısı izolasyonu üzerine ponza taşı tozu ve poliakrilik ester etkisinin incelenmesi

This study has aimed at the development of thermal insulation and adhesion properties of polypropylene (PP) fabric. The texture PP weft yarn, the texture weft yarn produced from hollow PP fiber and the nonwoven produced from PP fiber were used as three different raw materials, each of which was one-side coated with the mixture containing polyurethane and pumice stone powder with different concentrations in order to improve thermal insulation properties. Then the other sides of these fabrics were coated with polyacrylic ester based material so as to improve adhesion behavior of the fabrics. Finally, heat transfer coefficients of each fabric were analyzed in accordance with fabric type, concentration of pumice stone powder and polyacrylic ester based material along with adhesion properties. The results demonstrated that the increase in the concentration of pumice stone powder and the use of polyacrylic ester based material caused the decrease in the thermal conductivity coefficients. In addition, the use of polyacrylic ester based material brought in adhesion properties to fabrics in order for the ability to adhere these fabrics onto any surface. Key Words: Adhesion, Coating, Thermal insulation, Pumice stone, Polypropylene. ÖZET

___

  • 1.Pavlík, Z., Cerny, R.,2009, “Hygrothermal performance study of an innovative interior thermal insulation system”, Applied Thermal Engineering, 29, 1941– 1946.
  • 2.Luamkanchanaphan, T., Chotikaprakhan, S., Jarusombati, S.,2012, “A Study of physical, mechanical and thermal properties for thermal insulation from narrow-leaved cattail fibers”, APCBEE Procedia,1, 46 – 52.
  • 3.Asasutjarit, C., Hirunlabh, J., Khedari,J., Charoenvai, S., Zeghmati, B., Cheul Shin,U., “Development of coconut coir-based lightweight cement board”, Construction and Building Materials, 2007,21,277–288.
  • 4.Khedari, J., Nankongnab, N., Hirunlabh, J., Teekasap, S.,2004, “New low-cost insulation particleboards from mixture of durian peel and coconut coir”, Building and Environment, 39 ,59 – 65.
  • 5.Lertsutthiwong, P., Khunthon, S., Siralertmukul, K., Noomun, K., Chandrkrachang, S., 2008, “New insulating particleboards prepared from mixture of solid wastes from tissue paper manufacturing and corn peel”, Bioresource Technology, 99, 4841–4845.
  • 6.Zhou, X., Zheng, F., Li, H., Lu, C., 2010, “An environment-friendly thermal insulation material from cotton stalk fibers”, Energy and Buildings, 42, 1070– 1074.
  • 7.Pinto, J., Paiva, A., Varum, H., Costa, A., Cruz, D., Pereira, S., Fernandes, L., Tavares, P., Agarwal, J., 2011, “Corn’s cob as a potential ecological thermal insulation material”, Energy and Buildings, 43, 1985–1990.
  • 8.Ajlan, S., 2006, “Measurements of thermal properties of insulation materials by using transient plane source technique”, Applied Thermal Engineering, 26, 2184–2191.
  • 9.Wang, C., Feng, L., Li, W., Zheng, J., Tian, W., Li, X.,2012, “Shape-stabilized phase change materials based on polyethylene glycol/porous carbon composite: the influence of the pore structure of the carbon materials”, Solar Energy Materials & Solar Cells, 105, 21–26.
  • 10.Xi, P., Xia, L., Fei, P., Zhang, D., Cheng, B., 2012, “Preparation and performance of a novel thermoplastics polyurethane solid–solid phase change materials for energy storage”, Solar Energy Materials & Solar Cells, 102 ,36–43.
  • 11.Sun, G., Zhang,Z., 2002, “Mechanical strength of microcapsules made of different wall materials”, International Journal of Pharmaceutics, 242, 307–311.
  • 12.Aydın A., A., Okutan H., 2011, “High-chain fatty acid esters of myristyl alcohol with odd carbon number: novel organic phase change materials for thermal energy storage”, Solar Energy Materials & Solar Cells, 8 (95) , 2417-2423.
  • 13.Sarı A., Karaipekli A., 2007, “Preparation, thermal properties and thermal reliability of capric acid/expanded perlite composite for thermal energy storage”,Materials Chemistry and Physics, 109 (2-3), 459-464.
  • 14.Karaipekli A., Sarı A., Kaygusuz K., 2007, “Thermal conductivity improvement of stearic acid using expanded graphite and carbon fiber for energy storage applications”, Renewable Energy, 13 (5), 2201-2210.
  • 15.Alkan C., Sarı A., Karaipekli A., Uzun O., 2009, “Preparation, characterization and thermal properties of microencapsulated phase change material for thermal energy storage”, Solar Energy Materials & Solar Cells, 1 (93),143-147.
  • 16.Meng Q., Hu J., 2008, “A poly(ethylene glycol)-based smart phase change material”, Solar Energy Materials & Solar Cells, 92 (10), 1260-1268.
  • 17.Tsamis, C., Nassiopoulou, G., Tserepi, A., 2003, “Thermal properties of suspended porous silicon micro-hotplates for sensor applications”, Sensors and Actuators B: Chemical, 1–3 (95), 78–82.
  • 18.Lysenko, V., Boarino, L.,Bertola, M.,Remaki, B., Dittmar, A., Amato,G., Barbier, D., 1999, “Theoretical and experimental study of heat conduction in as- prepared and oxidized meso-porous silicon”, Microelectronics Journal,11 (30), 1141–1147.
  • 19.Bessenouci, M.Z., Triki,N.E.B, Khelladi, S.,Draoui, B., Abene, A.,2011, “The apparent thermal conductivity of pozzolana concrete”, Physics Procedia, 21, 59–66.
  • 20.Lysenko, L., Perichon, S., Remaki, B., Barbier, D., 2002, “Thermal isolation in microsystems with porous silicon”, Sensor and Actuators, 99, 13-24.
  • 21.Kılıc, M., Yigit, A., “Isı Transferi”, 2008, Alfa Aktuel Publish , Bursa.
  • 22. Gok, A., Gode, F., Turkaslan, B.E., 2006, “Synthesis and characterization of polyaniline/pumice(pan/pmc) composite”, Materials Science and Engineering, 133, 20-25.
  • 23. Golob M., Jeter S., Sadowski D., “Haet transfer coefficient between flat surface and sand”, Proceedings of the ASME 2011 5th International Conference on Energy Sustainability, August 7-10, Washington, DC, USA.
  • 24. Al-Ajlan, SA., 2006, “Measurement of thermal properties of insulation materials by using transient plane source technique”, Applied Thermal Engineering, 26, 2184-2191.
  • 25. Björk, F., Enochsson, T., 2009, “Properties of thermal insulation materials during extreme environment changes”, Construction and Building Materials, 23: 2189–2195.
  • 26. Budawai, I., Abdou, A., “The impact of thermal conductivity change of moist fibrous insulation on energy performance of buildings under hot–humid conditions”, Energy and Buildings, 2013,60:388-399.
  • 27. Abdou, A., Budaiwi,I., 2013, “The variation of thermal conductivity of fibrous insulation materials under different level of moisture content”, Construction and Building Materials, 43: 533–544.
  • 28. Kosny, J., Kossecka, E., Brzezinski, A., Tleoubaev, A.,Yarbrough,D., 2012, “Dynamic thermal performance analysis of fiber insulations containing bio- based phase change materials (PCMs)”, Energy and Buildings, 52 ,122–131.
  • 29. Kumar, A., Suman, B.M., 2013, “Experimental evaluation of insulation materials for walls and roofs and their impact on indoor thermal comfort under composite climate”, Building and Environment, 59, 635-643.
  • 30. Pan, B., Pan, B., Zhang, W., Lv, L., Zhang, Q., Zheng, S., 2009, “Development of polymeric and polymer-based hybrid adsorbents for pollutants removal from waters”, Chemical Engineering Journal, 151:19–29.
  • 31. TS 4512 Standard: Determination of Thermal Transmittance of Textiles, (1985).
Tekstil ve Konfeksiyon-Cover
  • ISSN: 1300-3356
  • Yayın Aralığı: Yılda 4 Sayı
  • Yayıncı: Ege Üniversitesi Tekstil ve Konfeksiyon Araştırma & Uygulama Merkezi