EMR (Elektromanyetik Radyasyon) KORUMA AMAÇLI BİKOMPONENT POLİESTER LİF ÜRETİMİ VE EMR KALKANLAMA ÖZELLİĞİNİN İNCELENMESİ

Bu çalışmada elektromanyetik radyasyondan korunma amaçlı multifilament S/C (sheath/ core) katkılı bikomponent poliester iplik üretimi gerçekleştirilmiştir. İplikler 260 dtex 72 filament olarak elde edilmiştir. Katkı malzemesi öncelikle taşıyıcı malzeme olarak PBT kullanılarak %20 nano demiroksit ile masterbatch şeklinde hazırlanmıştır. Bikomponent lifin merkezinde katkı malzemesi olarak % 20’liknanodemiroksit/ PBT masterbatch%1 oranında kullanılmıştır. %2 ve %3 oranları da denenmiş fakat akıştaki bozukluk ve kopukluklardan dolayı üretim yapılamamıştır. Üretilen ipliklere kaynama çekmesi ve mukavemet testleri yapılmıştır. Elde edilen ipliklerle iki farklı sıklıkta örme kumaş üretilmiştir. Üretilen kumaşların EMR koruma etkinliği araştırılmış30 MHz’ de % 1 demiroksit katkılı kumaşın ekranlama etkinliği daha sık olan kumaşta 18,78 dB iken, daha seyrek kumaşta 13,59 olarak ölçülmüştür

PRODUCTION OF BI-COMPONENT POLYESTER FIBRES FOR EMR (ELECTROMAGNETIC RADIATION) PROTECTION AND EXAMINING EMR SHIELDING CHARACTERISTICS

In this study, multifilament polyester yarns consist of bicomponent S/C (sheath/ core) fibres were produced in order to create electromagnetic shielding properties. Yarns were produced in 260 dtex linear density with 72 bicomponent filaments. The conductive additive material was nano iron oxide 20% (w/w) in PBT (polybutylene terephthalate) masterbatch.1, 2 and 3% masterbatch (20% nano iron oxide in PBT) were fed into the sample yarn production device, however; acceptable yarn production could only be achieved by 1% masterbatch due to the high number of machine stops at higher amounts of additive material. Shrinkage at the boil and tenacity tests were performed on the produced yarns. Also, the produced yarns were knit to form fabrics and test the EMSE (electromagnetic shielding efficiency) values by these knitted surfaces. The EMSE tests on the knitted fabric samples were performed basically according to ASTM D 4935 Coaxial Holder Method but the method used was a modified method that uses a smaller sample holder. The EMSE values at 30 MHz of the fabric samples knitted by the produced bicomponent yarns were measured as 18,78 dB and 13,59 dB for tight and loose stitch densities, respectively

___

  • 1. Ciesielska-Wrobel, I., Grabowska, K., 2012, “Estimation of the EMR Shielding Effectiveness of Knit Structures”, Fibres & Textiles In Eastern Europe, 20(2:91), pp:53-60.
  • 2. Dvurechenskaya, N., Bajurko, P.R., Zieliński, R.J., Yashchyshyn, Y., 2013, “Measurements of Shielding Effectiveness of Textile Materials Containing Metal by The Free-Space Transmission Technique With Data Processing in The Time Domain”, Metrol. Meas. Syst., 20(2), pp:217–228.
  • 3. Kayacan, O., 2014, “The Effect of Washing Processes On The Electromagnetic Shielding of Knitted Fabrics”, Tekstil ve Konfeksiyon, 24(4), pp:356-362.
  • 4. Palamutcu, S., Özek, A., Karpuz, C., 2010, ‘’Electrically Conductive Textile Surfaces and Their Electromagnetic Shielding Efficiency Measurement’’, Tekstil ve Konfeksiyon, 20(3), pp:199-207.
  • 5. Duran, K., Bahtiyari, M.İ., Atav, R., 2003, ‘’Protective Nonwoven Technical Textiles’’, Tekstil ve Konfeksiyon, 14(4), pp:174-177.
  • 6. Lichawska, J., Aniołczyk, H., Koprowska, J., 2004,’’Application of Electrically Conductive Textiles as Electromagnetic Shields in Physiotherapy’’, Fıbres & Text. in East. Eur., 12(4):48, pp:47-50.
  • 7. Lou, C.W., 2005, ‘’Process of Complex Core Spun Yarn Containing a Metal Wire’’, Textile Research Journal, 75(6), pp:466-473.
  • 8. Örtlek, H.G., Güneşoğlu, C., Okyay, G.,2012, ‘’Investigation of Electromagnetic Shielding and Comfort Properties of Single Jersey Fabrics Knitted From Hybrid Yarns Containing Metal Wire’’, Tekstil ve Konfeksiyon 22(2), pp: 90-101.
  • 9. Örtlek, H.G., Kılıç, G, Okyay, G., Bilgin, S., 2011, ‘’Electromagnetic Shielding Characteristics of Different Fabrics Knitted From Yarns Containing Stainless Steel Wire’’ Industria Textila, 62(6), pp:304–308.
  • 10. Örtlek, H.G., Alpyıldız, T., Kılıc, G., 2013,’’Determination of Electromagnetic Shielding Performance of Hybrid Yarn Knitted Fabrics With Anechoic Chamber Method’’, Textile Research Journal, 83(1), pp:90–99.
  • 11. Bedeloğlu, A., 2013,’’Electrical, Electromagnetic Shielding, and Some Physical Properties of Hybrid Yarn Based Knitted Fabrics’’, The Journal of The Textile Institute, 104(11), pp:1247-1257.
  • 12. Chen, H.C., Lee, K.C., Lin, J.H., 2004, “Electromagnetic and Electrostatic Shielding Properties of Co-Weaving-Knitting Fabrics Reinforced Composites”, Composites Part A: applied science and manufacturing’’, 35(11), pp:1249-1256.
  • 13. Cheng, K.B., Cheng, T.W., Lee, K.C., Ueng, T. H., Hsing, W.H., 2003, “Effects of Yarn Constitutions and Fabric Specifications on Electrical Properties of Hybrid Woven Fabrics”, Composites Part A: Applied Science and Manufacturing, 34(10), pp:971-978.
  • 14. Çeken, F., Kayacan, Ö., Özkurt, A., Uğurlu Ş.S., 2012, ‘’The Electromagnetic Shielding Properties of Some Conductive Knitted Fabrics Produced on Single or Double Needle Bed of a Flat Knitting Machine’’, Journal of The Textile Institute, 103(9), pp:968-979.
  • 15. Tezel, S., Kavusturan, Y., Vandenbosch, G.A.E., Volski, V., 2014, ‘’Comparison of Electromagnetic Shielding Effectiveness of Conductive Single Jersey Fabrics With Coaxial Transmission Line andFree Space Measurement Techniques’’, Textile Research Journal, 84(5), pp:461–476.
  • 16. Özdemir, H., Özkurt, A., 2013 ’’The Effects of Weave and Conductive Yarn Density On The Electromagnetic Shielding Effectiveness of Cellular Woven Fabrıcs’’, Tekstil ve Konfeksiyon, 23(2), pp:124-135.
  • 17. Duran, D., Kadoğlu, H., 2012, ‘’A Research On Electromagnetic Shielding With Copper Core Yarns’’, Tekstil ve Konfeksiyon , 22(4), pp:354-359.
  • 18. Avloni, J,. Florio, L,. Henn, A.R,. 2008 , ‘’Electromagnetic Shielding With Polypyrrole-Coated Fabrics’’, Journal Of Industrıal Textıles, 38(1), pp:55-68.
  • 19. Hakansson, E., Amiet, A., Nahavandi, S., 2007, ‘’Electromagnetic Interference Shielding and Radiation Absorption in Thin Polypyrrole Films‘’, European Polymer Journal, 43(1), pp:205-213.
  • 20. Hakansson, E., Amiet, A., Nahavandi, S., ‘’Electromagnetic Shielding Properties of Polypyrrole/Polyester Composites in The 1–18 GHz Frequency Range’’, Synthetic Metals, 156(14-15), pp:917-925.
  • 21. Neelakandan, R. and Madhusoothanan, M., 2010, ‘’Electrical Resistivity Studies on Polyaniline Coated Polyester Fabrics’’, Journal of Engineered Fibers and Fabrics, 5(3), pp:25-29.
  • 22. Kim, B., Koncar, V., Devaux, E., Dufour, P., 2004, ‘’Electrical and Morphological Properties of PP and PET Conductive Polymer Fibers’’, Synthetic Metals, 146, pp:167–174.
  • 23. Lee, C.Y., Lee, D.E., Jeong, C.K., 2002, ’’Electromagnetic Interference Shielding by Using Conductive Polypyrrole and Metal Compound Coated On Fabrics’’ Polimer For Advanced Technologies, 13, pp:577-583.
  • 24. Lai, K., Sun, R.J., Chen, M., 2007, ’’Electromagnetic Shielding Effectiveness of Fabrics With Metallized Polyester Filaments’’, Textile Research Journal, 77(4), pp:242-246.
  • 25. Proudnık, A., Zamastotsky, Y., Sıarheyev, V., 2012, ‘’Electromagnetic Interference Shielding Properties of the Cu, Ti and Cr Coatings Deposited by ArcPVD On Textile Materials’’, Przegląd Elektrotechnıczny (ElectricalReview), 88(6), pp:81-83.
  • 26. Feng, M., Wang, X., Zeng M., 2008, ’’Shielding Properties of Carbon Nanotubes-Amorphous Composite Coatings, Asia-Pacific Sympsoium on Electromagnetic Compatibility & 19th International Zurich Symposium on Electromagnetic Compatibility, 19–22 May 2008, Singapor, pp 899-902
  • 27. Oh, T.H., 2006, ‘’Effects of Spinning and Drawing Conditions on the Crimp Contraction of Side-by-Side Poly (trimethylene terephthalate) Bicomponent Fibers’’ Journal of Applied Polymer Science, 102(2), pp:1322–1327.
  • 28. Straat, M., Rgdahl, M., Hagström B., 2012, ‘’Conducting Bicomponent Fibers Obtained By Melt Spinning Of PA6 And Polyolefins Containing High Amounts Of Carbonaceous Fillers’’, Journal of Applied Polymer Science, 123 (2), pp: 936–943.
  • 29. Hagström, B., 2008, “Electrical Conductivity and Process Ability of Monocomponent and Bi-component Melt Spun Polypropylene Fibres Containing a Highly Conductive Carbon Black”, Proceedings: Ambience’08 Smart Textiles –Technology and Design Conference, Boras-Sweden, pp.20-25.
  • 30. ISO 2060, 1993, International Organization for Standardization.
  • 31. ISO 2062, 1994, International Organization for Standardization.
  • 32. DIN 53866, 1979, Testing of Textiles Shrinkage of Single and Plied Yarns: Determination of shrinkage in water.
  • 33. ASTM D4935-99, 1999, Standard Test Method for Measuring the Electromagnetic Shielding Effectiveness of Planar Materials.
  • 34. Mclntyre, J.E., 2005, Synthetic fibres: nylon, polyester, acrylic, polyolefin, Woodhead Publishing Limited, England.
  • 35. Sperling, L.H., 2006, Introduction to physical polymer science, John Wiley & Sons., NYSE, USA.
  • 36. Erıckson J., 2003, “Incorporating carbon nano tubes into polypropylene Fibers”, NCSU, Department Of Textıle and Apparel Technology And Management, Mater of Science Thesis, Raleigh, USA.
  • 37. Pocai, M.R., Bottari, E., 1999, “Electromagnetic characterization of protective clothing”. Electromagnetic compatibility. IEEE International Symposium, Tokyo, pp:516-519.
Tekstil ve Konfeksiyon-Cover
  • ISSN: 1300-3356
  • Yayın Aralığı: Yılda 4 Sayı
  • Yayıncı: Ege Üniversitesi Tekstil ve Konfeksiyon Araştırma & Uygulama Merkezi