KORUYUCU TEKSTİLLER İÇİN GELİŞTİRİLMİŞ BAZI TEKNİK ÖZLÜ İPLİKLERİN MUKAVEMET ÖZELLİKLERİ

Günümüzde yüksek performanslı lifler ısıya, aleve, kimyasallara, kesme ve delinmelere karşı dayanım; itfaiyeciler, askeriye ve sanayi için koruyucu giysiler ve eldivenler gibi teknik alanlarda kullanılmaktadır. Bu çalışmada koruyucu tekstillerin geliştirilmesinde kullanılabilecek bazı teknik özlü iplikler üç farklı öz/manto oranında yüksek performanslı lifler kullanılarak ring iplik makinesinde üretilmiştir. Özlü ipliklerin üretiminde manto lifi olarak kesikli para-aramid, meta-aramid ve PES Trevira® (güç tutuşur özellikli) lifleri; öz kısmında ise aynı incelikte (110 dtex) E-cam, PES Trevira®, PA HT, PP, PES HT, Technora® T240 and Dyneema® SK75 filamentleri kullanılmıştır. Üretilen ipliklere uygulanan mukavemet testleri sonucunda özün, mantonun ve öz/manto oranının mukavemet özelliklerine etkisi istatistiksel olarak incelenmiştir. Sonuçlar göstermiştir ki; öz ve mantoda kullanılan lif tipine ve farklı öz/manto oranlarına göre özlü ipliklerin mukavemet özellikleri farklı eğilimler göstermektedir. Mukavemet açısından en yüksek değerler paraaramid mantolu özlü ipliklerde görülmüş olup bunu PES Trevira® ve meta-aramid mantolu özlü iplikler izlemiştir. Uzama özellikleri bakımından ise bu sıralamanın tam tersi bir durum görülmüştür. En yüksek mukavemet değerleri Dyneema® ve Technora® özlü ipliklerde, en düşük değerler ise PES-Trevira® özlü ipliklerde ölçülmüştür. En yüksek uzama değerleri PP filamentlerle üretilmiş özlü ipliklerde gözlenmiştir

TENSILE PROPERTIES OF SOME TECHNICAL CORE SPUN YARNS DEVELOPED FOR PROTECTIVE TEXTILES

Today high performance fibres with uniquely inherent properties are used for many technical areas such as resistance to heat and flame, chemicals, stabs and cuts; protective clothing and gloves for firefighters, military and industry. In this study, some technical corespun yarns, which can be used in the development of protective textiles were produced with various high performance fibres in three core-sheath ratios (19/81%, 37/63%, 56/44%) by using a modified ring spinning frame. Short staple para-aramid, meta-aramid and PES Trevira® (flame retardant) fibres were used as sheath and multi filament yarns of 110 dtex linear density (E-glass, PES Trevira®, PA HT, PP, PES HT, Technora® T240 and Dyneema® SK75) as the core. The data obtained from tensile testing and the effects of sheath, core and core-sheath ratio on tensile properties were analysed statistically. The results revealed that the tensile properties of core-spun yarns show different tendencies with respect to the type of fibres in core, sheath and different core/sheath ratios. Higher tensile strength is noticed in core-spun yarns with para-aramid sheath fibres followed by PES Trevira® and meta-aramid, and vice-versa in case of elongation. Dyneema® and Technora® core-spun yarns exhibit the highest and PES-Trevira® the lowest tensile strength values. Highest elongation values were observed for core-spun yarns with PP filaments

___

  • 1. Miao M, Barnes S and Vuckovic L. High-speed video graphic study of filament-core yarn spinning. J Text I. 2010; 101: 242-52.
  • 2. Kim HJ, Yang HW, Zhu CY and Huh Y. Influence of the Core-sheath Weight Ratio and Twist on the Tensile Strength of the Ring Core Yarns with High Tenacity Filaments. Fiber Polym. 2009; 10: 546-50.
  • 3. Hasan MMB and Cherif C. Analysis of the Influence of Process Parameters on the Mechanical Properties of Carbon Core Friction Spun Hybrid Yarns for Composites. Fibres Text East Eur. 2011; 19: 59-64.
  • 4. Matsumoto Y, Kanai H, Morooka H, Kimura H and Fukushima K. Exploratory Work on the Spinning Condition of the Structure of Staple-core Twin-spun Yarns. Text Res J. 2010; 80: 1056-64.
  • 5. Gharahaghaji AA, Zargar EN, Ghane M and Hossaini A. Cluster-Spun Yarn - A New Concept in Composite Yarn Spinning. Text Res J. 2010; 80: 19-24.
  • 6. Pourahmad A and Johari MS. Production of core-spun yarn by the three-strand modified method. J Text I. 2009; 100: 275-81.
  • 7. Zhang HX, Zhang XC, Xue Y and Wang SY. Characteristics and Technology Optimizing of Core-Spun Yarns on Rotor Spinning Frame. Proceedings of the Fiber Society 2009 Spring Conference, Vols I and II. 2009: 92-5.
  • 8. Altas S. The Effect of Spinning Parameters on Friction Spun Core Yarns Tensile Properties. Tekstil. 2008; 57: 582-7.
  • 9. Xue YA, Yi HL, Chen WX and Cao Y. The Spinning Technology of Core-Sheath Filament/Staple Composite Yarns. 86th Textile Institute World Conference, Vol 2, Conference Proceedings. 2008.
  • 10. Gharehaghaji AA, Shanbeh M and Palhang M. Analysis of two modeling methodologies for predicting the tensile properties of cotton-covered nylon core yarns. Text Res J. 2007; 77: 565-71.
  • 11. Brunk, N. EliCore and EliCoreTwist production of compact core yarns. Spinnovation 2005; 21: 4–9.
  • 12. Matsumoto Y, Saito H, Sakaguchi A, et al. Combination effects of open-end rotor spun hybrid yarns. Text Res J. 2004; 74: 671-6.
  • 13. Pouresfandiari F, Fushimi S, Sakaguchi A, et al. Spinning conditions and characteristics of open-end rotor spun hybrid yarns. Text Res J. 2002; 72: 61-70.
  • 14. Merati AA, Konda F, Okamura M and Marui E. Filament pre-tension in core yarn friction spinning. Text Res J. 1998; 68: 254-64.
  • 15. Sawhney APS and Ruppenicker GF. Special purpose fabrics made with core-spun yarns. Indian J Fibre Text. 1997; 22: 246-54.
  • 16. Sawhney APS, Kimmel LB, Ruppenicker GF and Thibodeaux DP. A Unique Polyester Staple-Core Cotton-Wrap Yarn Made on a Tandem Spinning System. Text Res J. 1993; 63: 764-9.
  • 17. Matsumoto Y, Toriumi K, Tsuchiya I and Harakawa K. Properties of Double-Core Twin Spun Silk Yarns and Fabrics. Text Res J. 1992; 62: 710-4.
  • 18. Sawhney APS, Robert KQ and Ruppenicker GF. Device for Producing Staple-Core Cotton-Wrap Ring Spun Yarns. Text Res J. 1989; 59: 519-24.
  • 19. Shanbeh M, Baghaei B, Alidadi S and Tabibi A. Coating of Core Yarn. An Alternative Method of Decreasing the Strip-back Phenomenon of Core-spun Yarns. Fibres Text East Eur. 2011; 19: 28-32.
  • 20. Huang XX, Shi MW and Yao M. Comparative study on characteristics of twisting triangular space in ring spinning and core spinning. Proceedings of 2009
  • International Textile Science and Technology Forum. 2010: 157-63. 21. Miao M, How YL and Ho SY. Influence of spinning parameters on core yarn sheath slippage and other properties. Text Res J. 1996; 66: 676-84.
  • 22. Kim HJ, Kim JS, Lim JH and Huh Y. Detection of Wrapping Defects by a Machine Vision and its Application to Evaluate the Wrapping Quality of the Ring Core Spun Yarn. Text Res J. 2009; 79: 1616-24.
  • 23. Ziaee M, Borhani S and Shanbeh M. Evaluation of physical and mechanical properties of cotton covered polypropylene-core yarns and fabrics. Ind Textila. 2011; 62: 9-13.
  • 24. Vigneswaran C and Chandrasekaran K. Tensile characteristics of Dref-III friction core-spun yarns. J Text I. 2010; 101: 729-38.
  • 25. Yang RH, Xue Y and Wang SY. Comparison and Analysis of Rotor-Spun Composite Yarn and Sirofil Yarn. Fibres Text East Eur. 2010; 18: 28-30.
  • 26. Rameshkumar C, Rengasamy RS and Anbumani N. Studies on Polyester/Waste Silk Core-spun Yarns and Fabrics. J Ind Text. 2009; 38: 191-203.
  • 27. Sinha SK and Chattopadhyay R. Twist and Tensile Behaviour of Friction Spun Composite Yarn. 86th Textile Institute World Conference, Vol 1, Conference Proceedings. 2008.
  • 28. Yuan X, Yi HL and Yan C. Research on the drapability of the fabric consisted of core-sheath filaments/staple fibers composite yarns. Sen-I Gakkaishi. 2006; 62: 25-8.
  • 29. Chattopadhyay R and Chakrabarti AK. Influence of sheath-core fibre characteristics on the properties of dref-3 friction yarns. Indian J Fibre Text. 2003; 28: 150-6.
  • 30. Ishtiaque SM, Salhotra KR and Gowda RVM. Influence of filament core surface structure on tensile properties of DREF-3 yams. Indian J Fibre Text. 2002; 27: 18-24.
  • 31. Jeddi AAA, Johari MS and Merati AA. A study of the structural and physical properties of cotton-covered nylon filament core-spun yarns. J Text I. 1997; 88: 12-20.
  • 32. Radhakrishnaiah P, Tejatanalert S and Sawhney APS. Handle and Comfort Properties of Woven Fabrics Made from Random Blend and Cotton-Covered Cotton Polyester Yarns. Text Res J. 1993; 63: 573-9.
  • 33. Kimmel LB and Sawhney APS. Selected Properties of Predominantly Cotton Staple-Core Knitted Fabrics. Text Res J. 1995; 65: 587-92.
  • 34. Sawhney APS, Harper RJ, Ruppenicker GF and Robert KQ. Comparison of Fabrics Made with Cotton Covered Polyester Staple-Core Yarn and 100- Percent Cotton Yarn. Text Res J. 1991; 61: 71-4.
  • 35. Ruppenicker GF, Harper RJ, Sawhney AP and Robert KQ. Comparison of Cotton Polyester Core and Staple Blend Yarns and Fabrics. Text Res J. 1989; 59: 12-7.
  • 36. Sardar J. Study of mechanical behavior of Kevlar/polypropylene hybrid yarns and their composites. J Polym Eng. 2011; 31: 279-82.
  • 37. Tien DT, Kim JS and Huh Y. Evaluation of Anti-stabbing Performance of Fabric Layers Woven with Various Hybrid Yarns under Different Fabric Conditions. Fiber Polym. 2011; 12: 808-15.
  • 38. Jian-feng, LIU. Development of flame retardant fabrics made of core-spun yarn.J Tianjin Polytechnic Uni. 2009; 6: 016.
  • 39. Flambard X, Bourbigot S, Kozlowski R, et al. Progress in safety, flame retardant textiles and flexible fire barriers for seats in transportation. Polym Degrad Stabil. 2005; 88: 98-105.
  • 40. Ishtiaque SM and Das A. Study on thermal treatment of hybrid technical yarns. Fiber Polym. 2004; 5: 25-30.
  • 41. Graham CO and Ruppenicker GF. Cotton Outdoor Fabrics Reinforced with Glass-Fiber. Text Res J. 1983; 53: 120-5.
  • 42. Hearle, J. W. (Ed.). (2001). High-performance fibres. Elsevier,79
  • 43. Clements, Linda L. "Organic fibers." Handbook of Composites. Springer US, 1998; 221.
Tekstil ve Konfeksiyon-Cover
  • ISSN: 1300-3356
  • Yayın Aralığı: Yılda 4 Sayı
  • Yayıncı: Ege Üniversitesi Tekstil ve Konfeksiyon Araştırma & Uygulama Merkezi