Sürdürülebilir Kent Mobilyası Üretiminde Robotik 3D Baskı: Şehrini Yazdır Projesi Örneği

Günümüz dünyasında endüstriyel robotlar sayesinde bilgisayar destekli tasarım ve sürdürülebilir üretimde mevcut uygulamalar ile ulaşılan sınırları genişletme potansiyeli ortaya çıkmıştır. Özellikle, gelişen teknoloji ile robotik üretim modellerinin hepsi bu doğrultuda kullanılabilecek nitelikte araçlara dönüşmüştür. Robotik 3D baskı ve eklemeli üretim bahsi edilen süreçlerin anahtarı haline gelmiştir. Bu sayede, bilgisayar destekli tasarım ve robotik üretimin birleşik yöntemleri mobilya ölçeğinde de faydalı çıktılar ortaya koymaktadır. Ancak, söz konusu çıktıların sürdürülebilir üretime olan katkılarının değerlendirilmesi sürecin iyileştirilmesi için önem taşımaktadır . Bu makale, robotik 3D baskı yöntemi ile üretilmiş kent mobilyası çıktısının ekolojik ve sürdürülebilir ayak izi süreci temelinde çevre korunumuna katkılarını araştırmayı amaçlamaktadır. Bu doğrultuda, araştırma materyali olarak Şehrini Yazdır projesi seçilmiştir. Bu projenin seçilmesinin en önemli sebebi, sürdürülebilir kent mobilyası üretiminin plastik atıklar kullanılarak çevrimiçi kullanıcı deneyimi ile üretime geçirilmesi yönüyle örnek teşkil etmesidir. Çalışma içerisinde Şehrini Yazdır projesinin çevrenin korunması ile ekolojik ve sürdürülebilir ayak izi sürecinin alt parametrelerine uygunluğu açısından katkıları ve kısıtları analiz edilmektedir.

Robotic 3D Printing In Sustainable Urban Furniture Production: Print Your City Project Example

The potential to expand the boundaries reached by the existing applications in computer-aided design and sustainable production with industrial robots has emerged in today's world. Especially, all of the robotic manufacturing models have turned into tools that can be used with the development of technology. Robotic 3D printing and additive manufacturing have become the key to the processes mentioned above. In this direction, the combined computer-aided design and robotic manufacturing methods reveal useful outputs in furniture design. However, the evaluation of the contribution of these outputs to sustainable production is important for the improvement of the process. This article aims to investigate the ecological and sustainable footprint process of an urban furniture sample produced by a robotic 3D printing method and its contribution to environmental protection. In this direction, The Print Your City project is chosen as the research material . The most important reason for choosing this project is that it sets an example for producing sustainable urban furniture with an online user experience using plastic waste. In the study, the contributions and constraints of the Print Your City project in terms of environmental protection and compliance with the sub-parameters of the ecological and sustainable footprint process are analyzed.

___

  • Agustí-Juan, I., Müller, F., Hack, N., Wangler, T. ve Habert, G. (2017). Potential benefits of digital fabrication for complex structures: Environmental assessment of a robotically fabricated concrete wall. Journal of Cleaner Production, 154, 330–340. doi:10.1016/j.jclepro.2017.04.002
  • Alexandre, A., Cruz Sanchez, F. A., Boudaoud, H., Camargo, M. ve Pearce, J. M. (2020). Mechanical Properties of Direct Waste Printing of Polylactic Acid with Universal Pellets Extruder: Comparison to Fused Filament Fabrication on Open-Source Desktop Three-Dimensional Printers. 3D Printing and Additive Manufacturing, 7(5), 237–247. doi:10.1089/3dp.2019.0195
  • Andrady, A. L. ve Neal, M. A. (2009). Applications and societal benefits of plastics. Philosophical Transactions of the Royal Society B: Biological Sciences, 364(1526), 1977–1984. doi:10.1098/rstb.2008.0304
  • Arsyah, U. I., Jalinus, N., Arsyah, H. ve Pratiwi, M. (2021). Analysis of the Simple Additive Weighting Method in Educational Aid Decision Making. Turkish Journal of Computer and Mathematics Education, 12(14), 2389–2396.
  • Bechthold, M. (2010). The return of the future: A second go at robotic construction. Architectural Design. doi:10.1002/ad.1115
  • Bhamra, T. ve Hernandez, R. J. (2021). Thirty years of design for sustainability: an evolution of research, policy and practice. Design Science, 7, e2. doi:10.1017/dsj.2021.2
  • Bonwetsch, T., Kobel, D., Gramazio, F. ve Kohler, M. (2006). The informed wall: Applying additive digital fabrication techniques on architecture. Synthetic Landscapes - ACADIA 2006 International Conference, 489–495. doi:10.52842/conf.acadia.2006.489
  • Braumann, J. ve Brell-Cokcan, S. (2011). Parametric robot control: Integrated CAD/CAM for architectural design. Integration Through Computation - Proceedings of the 31st Annual Conference of the Association for Computer Aided Design in Architecture, ACADIA 2011, 242–251.
  • Braumann, J. ve Brell-Cokcan, S. (2012). Real-Time Robot Simulation and Control for Architectural Design. Digital Physicality Proceedings of the 30th eCAADe Conference, 2, 479–486.
  • Brell-cokcan, S. ve Braumann, J. (2010). A New Parametric Design Tool for Robot Milling. ACADIA 2010 içinde (ss. 357–363).
  • Carpenter, E. J., Anderson, S. J., Harvey, G. R., Miklas, H. P. ve Peck, B. B. (1972). Polystyrene Spherules in Coastal Waters. Science, 178(4062), 749–750. doi:10.1126/science.178.4062.749
  • Carpenter, E. J. ve Smith, K. L. (1972). Plastics on the Sargasso Sea Surface. Science, 175(4027), 1240– 1241. doi:10.1126/science.175.4027.1240
  • Ceschin, F. ve Gaziulusoy, I. (2016). Evolution of design for sustainability: From product design to design for system innovations and transitions. Design Studies, 47, 118–163. doi:10.1016/j.destud.2016.09.002Cruz Sanchez, F. A.,
  • Boudaoud, H., Camargo, M. ve Pearce, J. M. (2020). Plastic recycling in additive manufacturing: A systematic literature review and opportunities for the circular economy. Journal of Cleaner Production, 264, 121602. doi:10.1016/j.jclepro.2020.121602
  • Dertinger, S. C., Gallup, N., Tanikella, N. G., Grasso, M., Vahid, S., Foot, P. J. S. ve Pearce, J. M. (2020). Technical pathways for distributed recycling of polymer composites for distributed manufacturing: Windshield wiper blades. Resources, Conservation and Recycling, 157, 104810. doi:10.1016/j.resconrec.2020.104810
  • Geyer, R., Jambeck, J. R. ve Law, K. L. (2017). Production, use, and fate of all plastics ever made. Science Advances, 3(7). doi:10.1126/sciadv.1700782
  • Gramazio, F. ve Kohler, G. (2008). Digital Materiality in Architecture. Prestel Pub. https://books.google.com.tr/books?id=LIXWGAAACAAJ adresinden erişildi.
  • Hopewell, J., Dvorak, R. ve Kosior, E. (2009). Plastics recycling: Challenges and opportunities. Philosophical Transactions of the Royal Society B: Biological Sciences, 364(1526), 2115–2126. doi:10.1098/rstb.2008.0311
  • Hossain, M. A., Zhumabekova, A., Paul, S. C. ve Kim, J. R. (2020). A review of 3D printing in construction and its impact on the labor market. Sustainability (Switzerland), 12(20), 1–21. doi:10.3390/su12208492
  • Leder, S., Weber, R., Wood, D., Bucklin, O. ve Menges, A. (2019). Distributed Robotic Timber Construction. Ubiquity and Autonomy - Paper Proceedings of the 39th Annual Conference of the Association for Computer Aided Design in Architecture, ACADIA 2019, 510–519.
  • McGee, W. ve Ponce de Leon, M. (2014). Robotic Fabrication in Architecture, Art and Design 2014. Robotic Fabrication in Architecture, Art and Design 2014. Springer International Publishing. doi:10.1007/978-3-319-04663-1
  • Mohammed, M., Wilson, D., Gomez-Kervin, E., Petsiuk, A., Dick, R. ve Pearce, J. M. (2022). Sustainability and feasibility assessment of distributed E-waste recycling using additive manufacturing in a Bi-continental context. Additive Manufacturing, 50(November 2021), 102548. doi:10.1016/j.addma.2021.102548
  • OECD. (2022). Global Plastics Outlook. Global Plastics Outlook. OECD. doi:10.1787/aa1edf33-en Oesterle, S. (2009). Performance As A Design Driver in Robotic Timber Construction. 2009 TAIWAN CAADRIA: Between Man and Machine - Integration, Intuition, Intelligence - Proceedings of the 14th Conference on Computer-Aided Architectural Design Research in Asia içinde (ss. 663–671). doi:10.52842/conf.caadria.2009.663
  • Ogbemhe, J., Mpofu, K. ve Tlale, N. S. (2017). Achieving Sustainability in Manufacturing Using Robotic Methodologies. Procedia Manufacturing, 8(October 2016), 440–446. doi:10.1016/j.promfg.2017.02.056
  • Parascho, S., Han, I. X., Beghini, A., Miki, M., Walker, S., Bruun, E. P. G., ... Adriaenssens, S. (2020). LightVault: A Design and Robotic Fabrication Method for Complex Masonry Structures. Advances in Architectural Geometry, 350–375. Rao, J. S. (2011). Industrial Revolution. History of Rotating Machinery Dynamics içinde (C. 20, ss. 31– 34). doi:10.1007/978-94-007-1165-5_7
  • Ryberg, M. W., Hauschild, M. Z., Wang, F., Averous-Monnery, S. ve Laurent, A. (2019). Global environmental losses of plastics across their value chains. Resources, Conservation and Recycling, 151. doi:10.1016/j.resconrec.2019.104459 Sektör Değerlendirme Raporu. (2015). Robotik, Otomasyon ve Yapay Zekâ. https://thinktech.stm.com.tr/uploads/docs/1608887821_stm-sektor-raporu-robotik-otomasyon- yapay-zeka.pdf? adresinden erişildi.
  • Shukla, R. K. ve Deshmukh, D. B. (2016). A Review on Role of CAD / CAM in Designing for Skill Development. International Journal of Research in Engineering Science and Technologies (IJRESTs), 1(June 2015), 4–7.
  • The Business Research Company. (2021). Industrial Robots Global Market Report 2021: COVID-19 Growth and Change to 2030. https://www.researchandmarkets.com adresinden erişildi.
  • The New Raw. (2022). Print Your City. http://printyourcity.thenewraw.org/ adresinden erişildi.Thompson, R. C., Swan, S. H., Moore, C. J. ve vom Saal, F. S. (2009). Our plastic age. Philosophical Transactions of the Royal Society B: Biological Sciences, 364(1526), 1973–1976. doi:10.1098/rstb.2009.0054
  • TSE. (2021). TS ISO 8373 Robotik Sözlük. Ankara. https://intweb.tse.org.tr/ adresinden erişildi.
  • Vomhof, M., Vasey, L., Gramazio, F., Kohler, M., Bräuer, S., Eggenschwiler, K. ve Strauss, J. (2014). RObotic fabrication of acoustic brick walls. ACADIA 2014 - Design Agency: Proceedings of the 34th Annual Conference of the Association for Computer Aided Design in Architecture, 2014-Octob(Figure 1), 555–564.
  • Wallin, T. J., Pikul, J. ve Shepherd, R. F. (2018). 3D printing of soft robotic systems. Nature Reviews Materials, 3(6), 84–100. doi:10.1038/s41578-018-0002-2
  • Wang, X. V. ve Wang, L. (2021). A literature survey of the robotic technologies during the COVID-19 pandemic. Journal of Manufacturing Systems, 60(December 2020), 823–836. doi:10.1016/j.jmsy.2021.02.005
  • Weissenböck, R. (2015). Robotic Design-Fabrication - Exploring Robotic Fabrication as a Dynamic Design Process. Proceedings of the International Conference on Education and Research in Computer Aided Architectural Design in Europe içinde (C. 2, ss. 309–318). doi:10.52842/conf.ecaade.2015.2.309
  • Xu, M., David, J. M. ve Kim, S. H. (2018). The Fourth Industrial Revolution: Opportunities and Challenges. International Journal of Financial Research, 9(2), 90–95. doi:10.5430/ijfr.v9n2p90 Yap, Y. L., Sing, S. L. ve Yeong, W. Y. (2020). A review of 3D printing processes and materials for soft robotics. Rapid Prototyping Journal, 26(8), 1345–1361. doi:10.1108/RPJ-11-2019-0302 Zhang, Y., Meina, A., Lin, X., Zhang, K. ve Xu, Z. (2021). Digital Twin in Computational Design and Robotic Construction of Wooden Architecture. Advances in Civil Engineering, 2021, 1–14. doi:10.1155/2021/8898997