Soil particle size distribution and solid fractal dimension as influenced by pretreatments

Toprak parçacık büyüklük dağılımı toprak oluş işlemleri ve ürünleri hakkında önemli bilgiler sağlamaktadır. Bu çalışmanın amacı, ön muamelenin parçacık büyüklük dağılımına ve buna karşılık gelen parçacıkların fraktal boyuna (Ds) etkisini belirlemektir. Farklı iklim ve toprak oluşum işlemleri altında bulunan ve parçacık büyüklük dağılımı, kalsiyum karbonat ve organik madde içerikleri değişken olan yirmi dokuz toprak örneği toplanmıştır. Ön muamelenin parçacık büyüklük dağılımına etkisini değerlendirmek için, dört farklı şekilde parçacık büyüklük dağılımı ve fraktal boyut değerleri elde edilmiştir. Uygulamalar 1)kontrol (muamele yapılmayan), 2) H2O2 ile organik maddenin uzaklaştırılması 3) kalsit’in (CaCO3) NaOAc ile uzaklaştırılması ve 4) organik madde ve kalsiyum karbonatın uzaklaştırılması şeklindedir. Örneklerin kil içeriği %12.5 ile %66.5, organik madde %0.05 ile %4.25 ve kalsiyum karbonat içeriği %5.57 ile %60.09 arasında değişmektedir. Organik madde uzaklaştırılmadan önce ve sonraki kil içeriği istatistiksel olarak önemli (P

Ön muameleden etkilenen toprak parçacık büyüklük dağılımı ve katı fraktal boyutları

Soil particle-size distributions can provide valuable information on the processes and products of soil formation. The purpose of this study was to assess the pretreatment effect on the particle size distribution and corresponding fractal dimension of particle size (Ds). Twenty nine soil samples were collected from diverse climatic and pedogenic conditions with diverse particle size distributions, calcium carbonate and organic matter contents. To evaluate the effect of pretreatment on soil particle-size distribution, four different types of particle size distributions and fractal dimension values were obtained. Treatments included, 1) no pretreated, 2) organic matter removed with H2O2, 3) calcite (CaCO3) removed with NaOAc, and 4) organic matter and calcium carbonate removed. Clay content ranged from 12.5 to 66.5%, organic matter varied from 0.05 to 4.25%, and calcium carbonate content ranged from 5.57 to 60.09%. The difference in clay content before (42.36%) and after (44.61%) pretreatment of organic matter was significant (P

___

  • Bittelli M, Campbell G S & Flury M (1999). Characterization of particle-size distribution in soils with a fragmentation model. Soil Science Society of American Journal 63:782-788
  • Bronick C J & Lal R (2005). Soil structure and management: A review. Geoderma 124:3-22
  • Ersahin S, Gunal H, Yetgin B, Kutlu T & Coban S (2006). Estimating specific surface area and cation exchange capacity in soils with fractal dimension of particle-size distribution. Geoderma 136(3,4): 588- 597
  • Eshel G, Levy J, Mingelgrin U & Singer M J (2004). Critical evaluation of the use of laser diffraction for particle-size distribution analysis. Soil Science Society of American Journal 68:736-743
  • Feller C, Schouller E, Thomas F, Rouiller J & Herbillon A J (1992). N2-BET specific surface areas of some low activity clay soils and their relationships with secondary constituents and organic matter contents. Soil Science 153:293-299
  • Filgueira R R, Pachepsky Y A & Fournier L L (2003). Time-mass scaling in soil texture analysis. Soil Science Society of American Journal 67(6):1703- 1706
  • Filgueira, R R, Fournier L L, Cerisola C I, Gelati P & Garcia M G (2006). Particle-size distribution in soils: a critical study of the fractal model validation. Geoderma 134:327-334
  • Gee G W & Bauder J W (1986). Particle size analysis. In: Methods of Soil Analysis. A. Klute (Ed), Part 1, 2nd ed. Agronomy No. 9. American Society of Agronomy, Madison, WI, pp. 825-844
  • Hesse P R (1976). Particle size distribution in gypsic soils. Plant and Soil 44:241-247
  • Jin Z, Dong Y S, Qi Y C, Liu W G & An Z S (2011). Characterizing variations in soil particle size distribution along a grass–desert shrub transition in the ordos plateau of inner Mongolia, China. Land Degradation and Development. DOI: 10.1002/ldr.1112
  • Kerry R & Oliver M A (2006). How should soil texture be determined for chalk soil? 18th World Congress of Soil Science. July 5-9, 2006. Philadelphia, PA, USA
  • Khodaverdiloo H, Homaee M, van Genuchten M T & Dashtaki S G (2011) Deriving and validating pedotransfer functions for some calcareous soils. Journal of Hydrology 399:93-99
  • Kleinbaum D G, Kupper L L & Muller K E (1988). Applied Regression Analysis and Other Multivariable Methods. Second Edition, Duxbury Press. Belmont, CA. USA
  • Leifeld J & Kögel-Knabner I (2003). Microaggregates in agricultural soils and their size distribution determined by X-ray attenuation. European Journal of Soil Science 54:167-174
  • Nelson D W & Sommers L E (1982). Total carbon, organic carbon, and organic matter. In: Methods of Soil Analysis. Page, A.L. (Ed) Part 2, 2nd ed. Agron. Monogr. 9. ASA. And SSSA, Madison, WI, pp. 539-579
  • Perfect E & Kay B D (1991). Fractal theory applied to soil aggregation. Soil Science Society of American Journal 55:1552-1558
  • Posadas A N D, Gimenez D, Bittelli M, Vaz C M P & Flury M (2001), Multifractal characterization of soil particle-size distributions. Soil Science Society of American Journal 65:1361-1367
  • Rasiah V, Kay B D & Perfect E (1993), New massbased model for estimating fractal dimensions of soil aggregates. Soil Science Society of American Journal 57:891-895
  • Schmidt M W I, Rumpel C & Koegel-Knabner I (1999). Particle size fractionation of soil containing coal and combusted particles. European Journal of Soil Science 50:515-522
  • Schultz M K, Biegalski S R, Inn K G W, Yu L, Burnett W C, Thomas L J W & Smith G E (1999). Optimizing the removal of carbon phases in soils and sediments for sequential chemical extractions by coulometry. Journal of Environmental Monitoring 1:183-190
  • Soil Survey Division Staff (1993). Soil Survey Division Staff. 1993. Soil Survey Manual. USDA Handbook 18. United States Government Print Office, Washington, DC. USA
  • Soil Survey Staff (2010). Keys to Soil Taxonomy. 11th ed., USDA National Resources Conservation Service, Washington, DC. USA http://soils.usda.gov/technical/ classification/tax_keys/
  • Stanchi S E, Bonifacio E Z & Perfect E (2008). Chemical and physical treatment effects on aggregate breakup in the 0- to 2-mm size range. Soil Science Society of American Journal 72(5):1418- 1421
  • Stanchi S, Bonifacio E Z & Pachepsky E Y (2006). Fractal behavior in particle-size distributions as influenced by soil properties and determination method. Soil Science 171(4):283-292
  • Tisdall JM (1996). Formation of soil aggregates and accumulation of soil organic matter. In: Carter, MR., Stewart, B.A. (Eds.), Structure and Organic Matter Storage in Agricultural Soils. Lewis Publishers, Boca Raton, FL, pp. 57-96
  • Tyler S W & Wheatcraft S W (1992). Fractal scaling of soil-particle size distributions: Analysis and Limitations. Soil Science Society of American Journal 56:362-369
  • Wilding L P, & Dress L R (1983). Spatial variability in pedology In L.P. Wilding et al. (ed). Pedogenesis and soil taxonomy. I: concepts and interactions. Elseveir, New York, p. 83-116
  • Wu Q, M Borkovec, & Sticher H (1993). On particlesize distribution in soils. Soil Science Society of American Journal 57:883-890
Tarım Bilimleri Dergisi-Cover
  • Yayın Aralığı: Yılda 4 Sayı
  • Yayıncı: Halit APAYDIN