Hardaliyeden İzole Edilen Laktik Asit Bakterilerinin Bazı Teknolojik ve Fonksiyonel Özellikleri

Hardaliye; benzoik asit ve ezilmiş hardal tohumu ilavesiyle kırmızı üzüm ya da üzüm suyundan üretilen laktik asit fermentasyonuna uğramış bir içecektir ve yaygın olarak Türkiye’nin Trakya Bölgesi’nde üretilmekte ve tüketilmektedir. Bu çalışmanın amacı hardaliyedeki baskın laktik asit bakterisi türlerini belirlemek ve onların teknolojik ve probiyotik özellikleri ile hardaliye üretiminde starter kültür olarak potansiyel kullanımını araştırmaktır. Bu amaçla toplam 28 hardaliye örneğinden (Türkiye’de Kırklareli’nin farklı bölgelerinden toplanan 23 hardaliye örneği ve laboratuvar şartlarında geleneksel yöntemler kullanılarak üretilen 5 hardaliye örneği) laktik asit bakterileri (LAB) izole edilmiş ve tanımlanmıştır. Geleneksel ve moleküler biyolojik yöntemler uygulandıktan sonra, tüm LAB türlerinin Lactobacillus cinsine ait olduğu bulunmuştur. İzolatların yaklaşık % 98’i birbirine benzerken mikrobiyotadaki baskın tür Lactobacillus plantarum olarak bulunmuştur. Bundan dolayı, fermentasyon sırasında etkili LAB çeşitliliğinin düşük olduğu anlaşılmıştır. LAB’nin antimikrobiyal etkileri ve asit üretim yetenekleri göz önünde bulundurulduğunda, bu çalışmanın sonuçları izolatların hardaliye üretiminde kullanılmak için starter kültür olarak potansiyele sahip olduklarını göstermiştir.

Some Technological and Functional Properties of Lactic Acid Bacteria Isolated from Hardaliye

Hardaliye is a lactic acid fermented beverage produced from red grape or grape juice with addition of crushed mustard seeds and benzoic acid and it is widely produced and consumed in the Thrace region of Turkey. The aim of this study was to determine the dominant lactic acid bacteria (LAB) species found in hardaliye and to investigate their technological properties related to probiotic action and potential use as a starter culture for production of hardaliye. For this aim; LAB were isolated from 28 hardaliye samples (23 hardaliye samples that were obtained from different regions of Kirklareli, Turkey and 5 hardaliye samples were produced by using traditional methods in laboratory conditions). After carrying out conventional and molecular biological methods, it was found that all LAB species isolated belonged to genus Lactobacillus. The dominant species in the microbiota was found to be Lactobacillus plantarum while around 98% of the isolates were similar to each other. Therefore, it was well understood that a small diversity of LAB strains played role during the fermentation process. The results of this study revealed that the isolates had the potential to be used as starter cultures in hardaliye production due to their antimicrobial effects and acid production capabilities.

___

  • Vinderola C G & Reinheimer J A (2003). Lactic acid starter and probiotic bacteria: A comparative ‘‘in vitro’’ study of probiotic characteristics and biological barrier resistance. Food Research International 36: 895-904
  • Xanthopoulos V, Litopoulou-Tzanetaki E & Tzanetakis N (2000). Characterization of Lactobacillus isolates from infant faeces as dietary adjuncts. Food Microbiology 17: 205-215
  • Trias R, Baneras L, Badosa E & Montesinos E (2008). Bioprotection of golden delicious apples and iceberg lettuce against foodborne bacterial pathogens by lactic acid bacteria. International Journal of Food Microbiology 123: 50-60
  • Toksoy A, Beyatlı Y & Aslım B (1999). Studing on metabolic and antimicrobial activities of some L. plantarum strains isolated from sausages. Turkish Journal of Veterinary and Animal Science 23: 533-540
  • Toksoy A (1996). A study of some metabolic and antimicrobial activities of Lactobacillus plantarum and Pediococcus pentosaceus strains. PhD Thesis. Gazi University Institute of Science and Technology (Unpublished), Ankara
  • Temmerman R, Pot B, Huys G & Swings J (2003). Identification and antibiotic susceptibility of bacterial isolates from probiotic products. International Journal of Food Microbiology 81: 1-10
  • Tambekar D H & Bhutada S A (2010). Acid and bile tolerance, antibacterial activity, antibiotic resistance and bacteriocins activity of probiotic Lactobacillus species. Recent Research in Science and Technology 2: 94-98
  • Schillinger U & Lucke F K (1989). Antibacterial activity of Lactobacillus sake isolated from meat. Applied and Environmental Microbiology 55: 1901-1906
  • Sağdıç O, Arici M & Simşek O (2002). Selection of starters for a traditional Turkish yayik butter made from yoghurt. Food Microbiology 19: 303-312
  • Reinheimer J A, Dekow M R & Candioti M C (1990). Inhibition of coliform bacteria by lactic cultures. Australian Journal of Dairy Technology 2: 5-9
  • Raibaud P (1992). Bacterial interactions in the gut. In: R Fuller (ed), Probiotics: The Scientific Basis. Chapman and Hall, London, pp. 9-28
  • Raccach M & Baker R C (1978). Formation of hydrogen peroxide by meat starter cultures. Journal of Food Protection 41: 798-799
  • Pitcher D G, Saunders N A & Owen R J (1989). Rapid extraction of bacterial genomic DNA with guanidium thiocyanate. Letters in Applied Microbiology 8: 151-156
  • Perez P F, Minnaard Y, Disalvo E A & de Antoni G (1998). Surface properties of bifidobacterial strains of human origin. Applied and Environmental Microbiology 64:21-26
  • Ostile H M, Helland M H & Narvhus J A (2003). Growth and metabolism of selected strains of probiotic bacteria in milk. International Journal of Food Microbiology 87: 17-27
  • Norman D J, Yuen J M F, Resendiz R & Boswell J (2003). Characterization of Erwinia populations from nursery retention ponds and lakes infected ornamental plants in Florida. Plant Disease 87: 193-196
  • Mishra V & Prasad D N (2005). Application of in vitro methods for selection of Lactobacillus casei strains as potential probiotics. International Journal of Food Microbiology 103: 109-115
  • Meyers J A, Sanchez D, Elwell L P & Falkow S (1976). Simple agarose gel electrophoretic method for the identification and characterization of plasmid deoxyribonucleic acid. Journal of Bacteriology 127: 1529-1537
  • Marmur J (1961). A procedure for the isolation of deoxyribonucleic acids. Journal of Molecular Biology 3: 585-594
  • Louws F J, Fulbright D W, Stephens C T & de Bruijn F J (1994). Specific genomic fingerprints of phytopathogenic Xanthomonas and Pseudomonas pathovars and strains generated with repetitive sequences and PCR. Applied and Environmental Microbiology 60: 2286-2295
  • Lee B H & Simard R E (1984). Evaluation methods for detecting the production of H2 S, volatile sulfides, and greening by Lactobacilli. Journal of Food Science 49: 981-983
  • Kheadr E, Dabour N, Le Lay C, Lacroix C & Fliss I (2007). Antibiotic susceptibility profile of bifidobacteria as affected by oxgall, acid, and hydrogen peroxide stress. Antimicrobial Agents Chemotherapy 51: 169-174
  • Jackson M S, Bird A R & McOrist A I (2002). Comparison of two selective media for the detection and enumeration of lactobacilli in human faeces. Journal of Microbiological Methods 51: 313-321
  • Isolauri E, Sütäs Y, Kankaapää P, Arvilommi H & Salminen S (2001). Probiotics: Effects of immunity. The American Journal of Clinical Nutrition 73: 444- 450
  • Iñiguez-Palomares C, Pérez-Morales R & Acedo-Félix E (2007). Evaluation of probiotic properties in Lactobacillus isolated from small intestine of piglets. Revista Latinoamericana de Microbiología 49: 46-54
  • Hyronimus B, Le Marrec C, Hadj Sassi A & Deschamp A (2000). Acid and bile tolerance of spore-forming lactic acid bacteria. International Journal of Food Microbiology 61: 193-197
  • Gilliland S E, Staley T E & Bush L J (1984). Importance of bile tolerance of Lactobacillus acidophilus used as dietary adjunct. Journal of Dairy Science 67: 3045- 3051
  • Fernandes C F, Shahani K M & Amer M A (1987). Therapeutic role of dietary lactobacilli and lactobacillic fermented in dairy products. FEMS Microbiology Reviews 46: 343-356
  • El-Naggar M Y M (2004). Comparative study of probiotic cultures to control the growth of Escherichia coli O157:H7 and Salmonella typhimurium. Asian Network for Scientific Information Biotechnology 3: 173-180
  • De Vuyst L & Degeest B (1999). Heteropolysaccharides from lactic acid bacteria. FEMS Microbilogy Reviews 23: 153-177
  • De Vrese M, Steglman A, Richter B, Fenselau S, Laue C & Scherezenmeir J (2001). Probiotics-compensation for lactase insufficiency. American Journal of Clinical Nutrition 73: 421-429
  • Desmazeaud M (1996). Les bactéries lactiques dans l’alimentation humaine: Utilisation et innocuité. Cahiers Agricultures 5: 331-343
  • De Man J C, Rogosa M & Sharpe M E (1960). A medium for the cultivation of lactobacilli. Journal of Applied Bacteriology 23: 130-135
  • Coşkun F (2005). Geleneksel fermente bir içeceğimiz hardaliye. Hasad Gıda 21: 22-25
  • CLSI (2012). Clinical and Laboratory Standards Institute. Performance Standards for Antimicrobial Disk Susceptibility Tests; Approved Standard-Eleventh Edition M02-A11 Vol: 32, No: 1 Replaces M02-A10, Vol: 29, No: 1
  • Biopharm (2014). UV-method for the determination of d- and l-lactic acid in foodstuffs and other materials. http://www.r-biopharm.com/wp-content/ uploads/4076/MSDS 11112821035-D-lactic-Llactic-acid-test-kit_1.4_EN.pdf (Erişim tarihi: 15.12.2013)
  • Beyatlı Y & Akbari M (1996). UV-ışınlarının Lactobacillus plantarum ve Pediococcus pentosaceus bakterileri üzerine etkisinin araştırılması. Gazi University Journal of Science 9: 255-262
  • Battock M & Azam-Ali S (1998). Fermented Fruits and Vegetables. A Global Perspective. FAO Agricultural Services Bulletin No. 134. M-17
  • Aslım B & Beyatlı Y (2000). Yoğurt starter kültür metabolitlerinin inhibisyon etkisi. Turkish Journal of Biology 24: 65-78
  • Arici M, Bilgin B, Sagdic O & Ozdemir C (2004). Some characteristics of Lactobacillus isolates from infant faeces. Food Microbiology 21: 19-24
  • Altschul S F, Madden T L, Schaffer A A, Zhang J Z Z, Miller W & Lipman D J (1997). Gapped Blast and Psi-Blast: A new generation of protein database search programs, pp. 3389-3402