Bayesian Network Analysis for the Factors Affecting the 305-day Milk Productivity of Holstein Friesians

Bayesian Network Analysis for the Factors Affecting the 305-day Milk Productivity of Holstein Friesians

The variables affecting the milk productivity have been discussedin various articles through different methods. A recent studyusing path analysis shows that three variables significantly affectthe 305-day milk yield of Holstein Friesian cows. These variablesare parity, first calving year and lactation length. Calving seasonis another variable which appears to be significant in a differentstudy. The aim of this study is to provide a simultaneousmultilateral analysis among the milk yield, these three variablesand a new variable calving season. The analysis was realizedthrough a Bayesian network built over the findings of the pathanalysis. 17,109 records of Holstein Friesian cows calvedbetween 2001-2011 years were analyzed. The estimatedBayesian network showed that younger cows produced moremilk. Lactation length and parity do not depend on each other.Cows reached their highest amount of milk yield on their 4thparities. Milk yield is mostly affected by lactation length. Finally,first calving year, parity, lactation length and calving seasonshould be considered as criteria in a selection study to increasethe milk yield.

___

  • Aktürk D, Bayramoğlu Z, Savran F & Tatlıdil F F (2010). The factors affecting milk production and milk production cost: Çanakkale case-Biga. Kafkas Üniversitesi Veterinerlik Fakültesi Dergisi 16(2): 329-335
  • Cheng J, Greiner R, Kelly J, Bell D A & Liu W (2002). Learning Bayesian networks from data: An information-theory based approach. Artificial Intelligence 137: 43-90
  • Chickering D M (2002). Learning equivalence classes of Bayesian-network structures. Journal of Machine Learning Research 2: 445-498
  • Cooper G & Herskovits E (1991). A Bayesian method for constructing Bayesian belief networks from databases. In: Proceedings of the 7th Conference on Uncertainty in Artificial Intelligence, 13-15 July, Los Angeles, California, USA, pp. 86-94
  • de Campos L M & Huete J F (2000). A new approach for learning belief networks using independence criteria. International Journal of Approximate Reasoning 24: 11-37
  • Eastham N T, Coates A, Cripps P, Richardson H, Smith R & Oikonomou G (2018). Associations between age at first calving and subsequent lactation performance in UK Holstein and Holstein-Friesian dairy cows. PLoS One 13(6): 1-13
  • Eetvelde M V, Kamal M M, Vandaele L & Opsomer G (2017). Season of birth is associated with first-lactation milk yield in Holstein Friesian cattle. Animal 11(12): 2252-2259
  • GeNIe (2019). BayesFusion, LLC. Retrieved in January, 15, 2019 from http://www.bayesfusion.com/
  • Heckerman D (1998). A tutorial on learning with Bayesian networks. In: M I Jordan (Eds), Learning in Graphical Models, NATO ASI Series (Series D: Behavioral and Social Sciences), Springer, Dordrecht, pp. 301-354
  • Hugin (2019). Hugin Expert. Retrieved in January, 15, 2019 from https://www.hugin.com/
  • Iqbal A, Fukuda O, Hiroshi O, Endo K, Arai K & Yamashita K (2016). Japanese dairy cattle productivity analysis using Bayesian network model (BNM). International Journal of Advanced Computer Science and Applications 7(11): 31-37
  • İnci S, Kaygısız A, Efe E & Baş S (2007). Milk yield and reproductive traits in Brown Swiss cattle raised at Altınova State Farm. Tarım Bilimleri Dergisi 13(3): 203-212
  • İşçi Ö, Takma Ç & Akbaş Y (2015). Siyah alaca sığırlarda 305 günlük süt verimini etkileyen faktörlerin path (iz) analizi ile belirlenmesi. Kafkas Üniversitesi Veterinerlik Fakültesi Dergisi 21(2): 219-224
  • Jensen F V (2001). Bayesian Networks and Decision Graphs. Springer-Verlag New York Inc., Secaucus, New Jersey
  • Kaya A, Yaylak E & Önenç A (1998). Süt sığırcılığında düzenli üreme ve önemi. Hayvansal Üretim Dergisi 38: 8-17
  • Marcot B G (2012). Metrics for evaluating performance and uncertainty of Bayesian network models. Ecological Modelling 230: 50-62
  • Mote S S, Chauhan D S & Ghost N (2016). Effect of environment factors on milk production and lactation length under different seasons in crossbred cattle. Indian Journal of Animal Research 50(2): 175-180
  • Natori K, Uto M, Nishiyama Y, Kawano S & Ueno M (2015). Constraint-based learning Bayesian networks using Bayes factor. In: J Suzuki & M Ueno (Eds), Advanced Methodologies for Bayesian Networks, Springer, Switzerland, pp. 15-31
  • Netica (2019). Norsys Software Corp. Retrieved in January, 15, 2019 from https://www.norsys.com/netica.html
  • Pearl J (1991). Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference. Morgan Kaufmann Publishers Inc., San Francisco, California, pp. 321
  • Perochon L, Coulon J B & Lescourret F (1996). Modelling lactation curves of dairy cows with emphasis on individual variability. Journal of Animal Science 63: 189-200
  • Spirtes P, Glymour C & Scheines R (1993). Causation, Prediction and Search. Lecture Notes in Statistics 81, Springer-Verlag, New York
  • Şekerden Ö & Özkütük K (2000). Büyükbaş Hayvan Yetiştirme. Ç. Ü. Ziraat Fakültesi Ders Kitabı, No: C-122 s, Adana
  • Tahtalı Y, Şahin A, Ulutaş Z, Şirin E & Abacı S H (2011). Esmer ırkı sığırlarda süt verimi üzerine etkili faktörlerin path analizi ile belirlenmesi. Kafkas Üniversitesi Veterinerlik Fakültesi Dergisi 17(5): 859-864
  • Tümer S (2001). Süt Sığırı Yetiştirmede Döl Verimi ve Sürü Yönetimi. Kurs Notları, İzmir
  • Verma T S & Pearl J (1991). Equivalence and synthesis of causal models. Uncertain Artificial Intelligence 6: 255-268
  • Verma M K, Sachdeva G K, Yadav A K, Gautam S, Ali M M & Kumar S (2017). Effect of genetic and non-genetic factors on milk yield and milk constituents in Murrah buffalo. Indian Journal Animal Research 51(2): 387-390
  • Yüksel A N, Soysal İ, Kocaman İ & Soysal S İ (2000). Süt Sığırcılığı Temel Kitabı. Hasad Yayıncılık, İstanbul
Tarım Bilimleri Dergisi-Cover
  • Yayın Aralığı: 4
  • Yayıncı: Ankara Üniversitesi Basımevi
Sayıdaki Diğer Makaleler

The Response of Braeburn Apple to Regulated Deficit Irrigation

Cenk KÜÇÜKYUMUK, Halit YILDIZ, M. Kamil MERİÇ

Determination of the Hydraulic Properties of a Flat Type Drip Emitter using Computational Fluid Dynamics

Arzu YAZGI, Hüseyin YÜRDEM, Vedat DEMİR, Tuncay GÜNHAN

Efficacy of Native Entomopathogenic Nematodes on the Larvae of Tomato Leafminer Tuta absoluta (Meyrick) (Lepidoptera: Gelechiidae)

Çiğdem GÖZEL, Uğur GÖZEL, İsmail KASAP

Typhlodromus (Anthoseius) caudiglans (Schuster) (Acari: Phytoseiidae), The New Record for the Predatory Mite Fauna of Turkey in Erzurum

Önder ÇALMAŞUR, Sultan ÇOBANOĞLU, Kübra AKÇAKOYUNLUOĞLU

Mite Diversity (Acari) from Ornamental Plants in Erzurum in Turkey

Önder ÇALMAŞUR, Sultan ÇOBANOĞLU, Kübra AKÇAKOYUNLUOĞLU

The Influence of Irrigation Water Salinity and Humic Acid on Nutrient Contents of Onion (Allium cepa L.)

Hayrettin KUŞÇU, Bulent B. AŞIK, Ahmet TURHAN

Use of Super Absorbent Polymers with Euonymus Plants (Euonymus japonicus ‘Aureomarginatus’) in Ornamental Plant Cultivation

Gül YÜCEL, İdris KARAGÖZ

Bayesian Network Analysis for the Factors Affecting the 305-day Milk Productivity of Holstein Friesians

Volkan SEVİNÇ, Özge AKKUŞ, Çiğdem TAKMA, Öznur İŞÇİ GÜNERİ

Effects of Herbal Vitamin D3 and Phytase Supplementation to Broiler Feed on Performance, Bone Development and Serum Parameters of Broilers

İsmail YAVAŞ, Ali Anıl ÇENESİZ, Necmettin CEYLAN

İsmail YAVAŞ, Ali Anıl ÇENESİZ, Necmettin CEYLAN