PARKİNSON HASTALIĞINDA NÖROİNFLAMASYONUN ROLÜ

Parkinson Hastalığı (PH), substantia nigra pars compacta’daki dopaminerjik nöronların progresif kaybı, striatal dopamin seviyesinde azalma ve dopaminerjikliflerin kaybıyla karakterizedir. PH’ındaki nöronal dejenerasyon sürecinde; oksidatif stresin, aktive edilmiş mikroglia hücrelerinin ve nöroinflamasyonun rolü olduğu bilinmektedir. Mikroglial aktivasyon; proinflamatuar sitokinler, reaktif oksijen ve nitrojen türleri gibi zararlı maddelerin salıverilmesine neden olarak dopaminerjik nöron dejenerasyonundan genellikle sorumlu tutulmaktadır. PH, yoğun araştırma konusu olmasına rağmen hastalığın patogenezinde yatan mekanizmalar tam olarak anlaşılamamıştır. Dolayısıyla, bu süreci tamamen önleyen bir tedavi de bulunamamıştır. Bu derlemede, PH patogenezinde yer alan nöroinflamasyon süreçleri incelenmiştir

THE ROLE OF NEUROINFLAMMATION IN PARKINSON’S DISEASE

Parkinson’s disease (PD) is characterized by the loss of nigral dopaminergic neurons, loss of striatal dopaminergic fibers and reduction of the striatal dopamine levels. It is known that oxidative stress, activated microglial cells and neuroinflammation are in neurodegeneration process of PD. Microglial activation is most likely responsible for dopaminergic neuron degeneration through the release of harmful substances such as proinflammatory cytokines, reactive oxidative species and nitrogen species. Although a issue dense search, the mechanisms underlying patogenesis of PD have been incompletely understood. Therefore, treatment exactly prevent the duration, has not discovered. In the present review, neuroinflammation processes are located in the pathogenesis of PD, are aimed.

___

  • 1. Phani S, Loike JD, Przedborski S. Neurodegeneration and inflammation in Parkinson’s disease. Parkinsonism & related disorders 2012;18(1):207-9.
  • 2. Episcopo FL, Tirolo C, Testa N, Caniglia S, Morale MC, Marchetti B. Reactive astrocytes are key players in nigrostriatal dopaminergic neurorepair in the MPTP mouse model of Parkinson’s disease: focus on endogenous neurorestoration. Current aging science 2013;6(1):45-55.
  • 3. Hernandes MS, Santos GD, Cafe-Mendes CC, Lima LS, Scavone C, Munhoz CD, et al. Microglial cells are involved in the susceptibility of NADPH oxidase knockout mice to 6-hydroxy-dopamine-induced neurodegeneration. PloS one 2013;8(9):e75532.
  • 4. Holmqvist S, Chutna O, Bousset L, Aldrin-Kirk P, Li W, Bjorklund T. Direct evidence of Parkinson pathology spread from the gastrointestinal tract to the brain in rats. Act Neuropathol 2014;128(6):805-20.
  • 5. Schober A. Classic toxin-induced animal models of Parkinson’s disease: 6-OHDA and MPTP. Cell Tissue Res 2004;318(1):215- 24.
  • 6. Hirsch EC, Vyas S, Hunot S. Neuroinflammation in Parkinson’s disease. Parkinsonism & related disorders 2012;18(1):210-2.
  • 7. Chao Y, Wong SC, Tan EK. Evidence of inflammatory system involvement in Parkinson’s disease. BioMed research international 2014;2014:308654.
  • 8. Jackson-Lewis V, Smeyne RJ. MPTP and SNpc DA neuronal vulnerability: role of dopamine, superoxide and nitric oxide in neurotoxicity. Minireview. Neurotoxicity research 2005;7(3):193-202.
  • 9. Nolan YM, Sullivan AM, Toulouse A. Parkinson’s disease in the nuclear age of neuroinflammation. Trends in molecular medicine 2013;19(3):187-96.
  • 10. Şentürk E, Esen F. Sepsiste İmmunoglobülin Tedavisi ile Kompleman İnhibisyonu ve Nöroproteksiyon. Türk Anesteziyoloji Reanimasyon Dergisi 2012;40(4):184-92.
  • 11. Laveti D, Kumar M, Hemalatha R, Sistla R, Naidu VG, Talla V, et al. Anti-inflammatory treatments for chronic diseases: a review. Inflammation & allergy drug targets 2013;12(5):349-61.
  • 12. Gao HM, Liu B, Zhang W, Hong JS. Novel anti-inflammatory therapy for Parkinson’s disease. Trends in pharmacological sciences 2003;24(8):395-401.
  • 13. Mosley RL, Benner EJ, Kadiu I, Thomas M, Boska MD, Hasan K, et al. Neuroinflammation, Oxidative Stress and the Pathogenesis of Parkinson’s Disease. Clinical neuroscience research 2006;6(5):261-81.
  • 14. Wilms H, Zecca L, Rosenstiel P, Sievers J, Deuschl G, Lucius R. Inflammation in Parkinson’s diseases and other neurodegenerative diseases: cause and therapeutic implications. Current pharmaceutical design 2007;13(18):1925-8.
  • 15. Hirsch EC, Hunot S. Neuroinflammation in Parkinson’s disease: a target for neuroprotection? The Lancet Neurology 2009;8(4):382-97.
  • 16. Qian L, Flood PM, Hong JS. Neuroinflammation is a key player in Parkinson’s disease and a prime target for therapy. J Neural Transm 2010;117(8):971-9.
  • 17. Duke DC, Moran LB, Pearce RK, Graeber MB. The medial and lateral substantia nigra in Parkinson’s disease: mRNA profiles associated with higher brain tissue vulnerability. Neurogenetics 2007;8(2):83-94.
  • 18. Lleo A, Galea E, Sastre M. Molecular targets of non-steroidal anti-inflammatory drugs in neurodegenerative diseases. Cell Mol Life Sci 2007;64(11):1403-18.
  • 19. Zaminelli T, Gradowski RW, Bassani TB, Barbiero JK, Santiago RM, Maria-Ferreira D, et al. Antidepressant and antioxidative effect of Ibuprofen in the rotenone model of Parkinson’s disease. Neurotoxicity research 2014;26(4):351-62.
  • 20. Taylor JM, Main BS, Crack PJ. Neuroinflammation and oxidative stress: co-conspirators in the pathology of Parkinson’s disease. Neurochem Int 2013;62(5):803-19.
  • 21. Chung YC, Kim SR, Jin BK. Paroxetine prevents loss of nigrostriatal dopaminergic neurons by inhibiting brain inflammation and oxidative stress in an experimental model of Parkinson’s disease. J Immunol 2010;185(2):1230-7.
  • 22. Xing B, Liu M, Bing G. Neuroprotection with pioglitazone against LPS insult on dopaminergic neurons may be associated with its inhibition of NF-kappaB and JNK activation and suppression of COX-2 activity. J Neuroimmunol 2007;192(1-2):89- 98.
  • 23. Liberatore GT, Jackson-Lewis V, Vukosavic S, Mandir AS, Vila M, McAuliffe WG, et al. Inducible nitric oxide synthase stimulates dopaminergic neurodegeneration in the MPTP model of Parkinson disease. Nat Med 1999;5(12):1403-9.
  • 24. Yang X, Lou Y, Liu G, Wang X, Qian Y, Ding J, et al. Microglia P2Y6 receptor is related to Parkinson’s disease through neuroinflammatory process. Journal of neuroinflammation 2017;14(1):38.
  • 25. Tansey MG, Goldberg MS. Neuroinflammation in Parkinson’s disease: its role in neuronal death and implications for therapeutic intervention. Neurobiol Dis 2010;37:510-8.
  • 26. Stojkovska I, Wagner BM, Morrison ME. Parkinson’s disease and enhanced inflammatory response. 2015;240(11):1387-95.
  • 27. Chung YC, Ko HW, Bok E, Park ES, Huh SH, Nam JH, et al. The role of neuroinflammation on the pathogenesis of Parkinson’s disease. BMB reports 2010;43(4):225-32.
  • 28. McGeer PL, Itagaki S, Boyes BE, McGeer EG. Reactive microglia are positive for HLA-DR in the substantia nigra of Parkinson’s and Alzheimer’s disease brains. Neurology 1988;38(8):1285-91.
  • 29. Jenner P, Olanow CW. The pathogenesis of cell death in Parkinson’s disease. Neurology 2006;66:24-36.
  • 30. Ramsey CP, Tansey MG. A survey from 2012 of evidence for the role of neuroinflammation in neurotoxin animal models of Parkinson’s disease and potential molecular targets. Experimental neurology 2014;256:126-32.
  • 31. Tiwari PC, Pal R. The potential role of neurıinflammation and transcription factors in Parkinson disease. Dialogues in clinical neuroscience 2017;19(1):71-80.
  • 32. Nagatsu T, Sawada M. Inflammatory process in Parkinson’s disease: role for cytokines. Current pharmaceutical design 2005;11(8):999-1016.
  • 33. Rajasekar N, Dwivedi S, Nath C, Hanif K, Shukla R. Protection of streptozotocin induced insulin receptor dysfunction, neuroinflammation and amyloidogenesis in astrocytes by insulin. Neuropharmacology 2014;86:337-52.
  • 34. Joe EH, Choi DJ, An J, Eun JH, Jou I, Park S. Astrocytes, Microglia, and Parkinson’s Disease. Experimental neurobiology 2018;27(2):77-87.
  • 35. Lee E, Park HR, Ji ST, Lee Y, Lee J. Baicalein attenuates astroglial activation in the 1-methyl-4-phenyl-1,2,3,4-tetrahydropyridine-induced Parkinson’s disease model by downregulating the activations of nuclear factor-kappaB, ERK, and JNK. J Neurosci Res 2014;92(1):130-9.
  • 36. Halliday GM, Stevens CH. Glia: initiators and progressors of pathology in Parkinson’s disease. Movement disorders: official journal of the movement disorder society 2011;26(1):6-17.
Süleyman Demirel Üniversitesi Tıp Fakültesi Dergisi-Cover
  • ISSN: 1300-7416
  • Yayın Aralığı: Yılda 4 Sayı
  • Başlangıç: 1994
  • Yayıncı: SDÜ Basımevi / Isparta
Sayıdaki Diğer Makaleler

ANESTEZİ DOKTORLARININ PEROPERATİF END-TİDAL KARBONDİOKSİT MONİTÖRİZASYON UYGULAMALARI

Döndü GENÇ MORALAR, Sevgi KESİCİ

REKTUM KANSERİNDE NEOADJUVAN KEMORADYOTERAPİ SONRASI RADYOLOJİK VE PATOLOJİK YANIT PREDİKTÖRLERİNİN DEĞERLENDİRİLMESİ

E. Elif ÖZKAN, H. Erol EROĞLU, Nermin KARAHAN, Sevim Süreyya ŞENGÜL

RUTİN İKİNCİ TRİMESTER SONOGRAFİSİNDE DİASTEMATOMİYELİNİN TEŞHİSİ

Serenat ERİŞ YALÇIN, And YAVUZ, Mehmet Özgür AKKURT, Yakup YALÇIN, Aslım ÇINAR, Mekin SEZİK

PLATELETTEN ZENGİN FİBRİNİN İYİLEŞME VE REJENERASYON SÜRECİNDEKİ ROLÜ VE ORTOPEDİK CERRAHİDE KULLANIMINA DAİR BİR DERLEME

Turan Cihan DÜLGEROĞLU, Baran ŞEN

HALLUKS VALGUS TEDAVİSİNDE MODİFİYE CHEVRON OSTEOTOMİSİ UYGULAMALARIMIZIN ORTA VE UZUN DÖNEM SONUÇLARI

Barış YILMAZ, Cem ÇOPUROĞLU, Mert ÖZCAN, Mert ÇİFTDEMİR, Kağan Volkan ÜNVER, Nurettin HEYBELİ

MİTRAL ANÜLÜS KALSİFİKASYONUNUN ELEKTROKARDİYOGRAM PARAMETRELERİ ÜZERİNDE ETKİLERİ

Mevlüt Serdar KUYUMCU, Çağrı YAYLA

PARKİNSON HASTALIĞINDA NÖROİNFLAMASYONUN ROLÜ

Elif TAŞDEMİR

GENEL CERRAHİ KLİNİĞİMİZDE ADRENALEKTOMİ YAPILAN HASTALARIN DEĞERLENDİRİLMESİ

Yaşar Subutay PEKER, Murat URKAN

INTERNET USAGE PROFILE OF MEDICAL STUDENTS AND EFFECTS OF INTERNET ADDICTION ON SAGITTAL BALANCE

Nilgün ŞENOL, Evrim AKTEPE, Selim GÜNÜÇ, Kemal ERTİLAV, İlker ALACA

TİROGLOBULİN ÖLÇÜMLERİNİN DÜŞÜK TİTRELERDEKİ ANTİ-TİROGLOBULİNLE İNTERFERANSININ ARAŞTIRILMASI

Mehmet Ramazan ŞEKEROĞLU, Bedia BATİ, Erdem ÇOKLUK, Mustafa K. ÖZTÜRK