Biyolojik damarsal greft üretiminde hücresizleştirme metodları; güncel literatür derlemesi

Hücresizleştirme (Decellularization) hücre ve hücre içi organellerin zarlarının bütünlüğünü bozarak DNA, RNA, yağlar, mitokondri ve sitoplazmik zardaki hücre kimliğini taşıyan proteinler ve sitozolik içerik gibi tüm hücresel yapıların temizlenerek, önemli hücre dışı matriks yapılarının üç boyutlu ultrastrüktür, temel matriks proteinleri ve büyüme faktörleri gibi öğelerinin korunması ve sonrasında implantasyon ile in vivo ya da in vitro ortamda dokunun kendine ait özelliklerle başarılı bir şekilde yeniden modellenmesi işlemidir. Bu derleme makalesinin amacı damar dokusunun hücresizleştirilmesi işlemi sırasında kullanılan birçok farklı çeşit yöntemin incelenerek başarılı veya başarısız yönlerinin ortaya konmasıdır.

The decellularization methodologies for the production of biologic vascular graft; an updated literature review

Decellularization is disrupting the integrity of cells and intracellular organelles' membranes, cleaning all of the cytosolic content and cellular structures that have the identity of the cells such as DNA, RNA, lipids, proteins and membranes, and preserving the important extracellular matrix structures such as three-dimensional ultrastructure, basic matrix proteins and growth factors. The successful decellularization may ensure a successful recellularization of the tissue after implantation in vivo or in vitro. The aim of this review article is inspecting successful or unsuccessful aspects of the different types of methods used during the decellularization process of the vascular tissue.

___

  • 1. World Health Organization. WHO | Cardiovascular diseases (CVDs). WHO 2016:webpage. http://www. who.int/mediacentre/factsheets/fs317/en/ (Erişim Tarihi Ekim 5, 2016).
  • 2. Arslan YE, Hız MM, Arslan TS. The Use of Decellularized Animal Tissues in Regenerative Therapies. Kafkas Universitesi Veteriner Fakultesi Dergisi 2015;21:139- 45. doi:10.9775/kvfd.2014.11663.
  • 3. Erdogan A, Eser İ, Türk T, Ugur G, Demircan A. Prostetik Vasküler Greft Cinsleri ve Uzun Dönem Sonuçları. Türk Gögüs Kalp Damar Cer Derg 2002;10:37-41.
  • 4. Eren S, Ulcay Y. Yapay Tekstil Damarları. Electronic Journal of Textile Technologies 2010;4:35-47.
  • 5. Gökşin İ, Önem G, Baltalarlı A, Özcan V, Gürses E, Evrengül H, et al. Ekstremite Revaskülarizasyonu İçin Alternatif Yaklaşım : Ekstra- anatomik Bypass Greftleme. Turkish J Thorac Cardiovasc Surg 2004:40- 6.
  • 6. Yiğit A, Yiğit B, Koşar PA, Savaş HB, Korkmaz M. Doku Mühendisliğinde Deselülerizasyon Metodları ile Ekstraselüler Matriks (ECM) Eldesi ve Tıbbi Tedavide Uygulama Alanları. Chemistry and Industry 2016;2:29- 43.
  • 7. Vohra R, Thomson GJ, Carr HM, Sharma H, Walker MG. Comparison of different vascular prostheses and matrices in relation to endothelial seeding. The British Journal of Surgery 1991;78:417-20.
  • 8. Tiwari A, Salacinski H, Seifalian AM, Hamilton G. New prostheses for use in bypass grafts with special emphasis on polyurethanes. Cardiovascular Surgery (London, England) 2002;10:191-7.
  • 9. Crapo PM, Gilbert TW, Badylak SF, Badylak DVM. An overview of tissue and whole organ decellularization processes. Biomaterials 2011;32:3233-43.
  • doi:10.1016/j.biomaterials.2011.01.057.An. 10. Badylak SF, Taylor D, Uygun K. Whole Organ Tissue Engineering: Decellularization and Recellularization of Three-Dimensional Matrix Scaffolds. Annual Review of Biomedical Engineering 2010;13:110301095218061. doi:10.1146/annurev-bioeng-071910-124743.
  • 11. He M, Callanan A. Comparison of methods for wholeorgan decellularization in tissue engineering of bioartificial organs. Tissue Engineering Part B, Reviews 2013;19:194-208. doi:10.1089/ten.TEB.2012.0340.
  • 12. Theocharis AD, Skandalis SS, Gialeli C, Karamanos NK. Extracellular matrix structure. Advanced Drug Delivery Reviews 2016;97:4-27. Doi: 10.1016/j. addr.2015.11.001
  • 13. He H, Liu X, Peng L, Gao Z, Ye Y, Su Y, et al. Promotion of hepatic differentiation of bone marrow mesenchymal stem cells on decellularized cell-deposited extracellular matrix. BioMed Research International 2013;2013:406871. doi:10.1155/2013/406871.
  • 14. Gilbert TW, Sellaro TL, Badylak SF. Decellularization of tissues and organs. Biomaterials 2006;27:3675-83. doi:10.1016/j.biomaterials.2006.02.014.
  • 15. Katsimpoulas M, Morticelli L, Michalopoulos E, Gontika I, Stavropoulos-Giokas C, Kostakis A, et al. Investigation of the Biomechanical Integrity of Decellularized Rat Abdominal Aorta. Transplantation Proceedings 2015;47:1228-33. doi:10.1016/j. transproceed.2014.11.061.
  • 16. Catto V, Farè S, Freddi G, Tanzi MC, Catto V, Farè S, et al. Vascular Tissue Engineering: Recent Advances in Small Diameter Blood Vessel Regeneration. ISRN Vascular Medicine 2014;2014:1- 27. doi:10.1155/2014/923030.
  • 17. Fu RH, Wang YC, Liu SP, Shih TR, Lin HL, Chen YM, et al. Decellularization and recellularization technologies in tissue engineering. Cell Transplantation 2014;23:621- 30. doi:10.3727/096368914X678382.
  • 18. Pellegata AF, Asnaghi MA, Stefani I, Maestroni A, Maestroni S, Dominioni T, et al. Detergent-enzymatic decellularization of swine blood vessels: insight on mechanical properties for vascular tissue engineering. BioMed Research International 2013;2013:918753. doi:10.1155/2013/918753.
  • 19. Good NE, Winget GD, Winter W, Connolly TN, Izawa S, Singh RM. Hydrogen ion buffers for biological research. Biochemistry 1966;5:467-77.
  • 20. Gulati AK. Evaluation of acellular and cellular nerve grafts in repair of rat peripheral nerve. Journal of Neurosurgery 1988;68:117-23. doi:10.3171/jns.1988.68.1.0117.
  • 21. Flynn LE. The use of decellularized adipose tissue to provide an inductive microenvironment for the adipogenic differentiation of human adiposederived stem cells. Biomaterials 2010;31:4715-24. doi:10.1016/j.biomaterials.2010.02.046.
  • 22. Cortiella J, Niles J, Cantu A, Brettler A, Pham A, Vargas G, et al. Influence of acellular natural lung matrix on murine embryonic stem cell differentiation and tissue formation. Tissue Engineering Part A 2010;16:2565-80. doi:10.1089/ten.tea.2009.0730.
  • 23. Hopkinson A, Shanmuganathan VA, Gray T, Yeung AM, Lowe J, James DK, et al. Optimization of amniotic membrane (AM) denuding for tissue engineering. Tissue Engineering Part C, Methods 2008;14:371-81. doi:10.1089/ten.tec.2008.0315.
  • 24. Sasaki S, Funamoto S, Hashimoto Y, Kimura T, Honda T, Hattori S, et al. In vivo evaluation of a novel scaffold for artificial corneas prepared by using ultrahigh hydrostatic pressure to decellularize porcine corneas. Molecular Vision 2009;15:2022-8.
  • 25. Funamoto S, Nam K, Kimura T, Murakoshi A, Hashimoto Y, Niwaya K, et al. The use of highhydrostatic pressure treatment to decellularize blood vessels. Biomaterials 2010;31:3590-5. doi:10.1016/j. biomaterials.2010.01.073.
  • 26. Lee RC. Cell injury by electric forces. Annals of the New York Academy of Sciences 2005;1066:85-91. doi:10.1196/annals.1363.007.
  • 27. Gilbert TW, Wognum S, Joyce EM, Freytes DO, Sacks MS, Badylak SF. Collagen fiber alignment and biaxial mechanical behavior of porcine urinary bladder derived extracellular matrix. Biomaterials 2008;29:4775-82. doi:10.1016/j.biomaterials.2008.08.022.
  • 28. Hodde J, Janis A, Ernst D, Zopf D, Sherman D, Johnson C. Effects of sterilization on an extracellular matrix scaffold: part I. Composition and matrix architecture. Journal of Materials Science Materials in Medicine 2007;18:537-43. doi:10.1007/s10856-007-2300-x.
  • 29. Hodde J, Hiles M. Virus safety of a porcine-derived medical device: evaluation of a viral inactivation method. Biotechnology and Bioengineering 2002;79:211-6. doi:10.1002/bit.10281.
  • 30. Gorschewsky O, Puetz A, Riechert K, Klakow A, Becker R. Quantitative analysis of biochemical characteristics of bone-patellar tendon-bone allografts. Bio-Medical Materials and Engineering 2005;15:403-11.
  • 31. Reing JE, Brown BN, Daly KA, Freund JM, Gilbert TW, Hsiong SX, et al. The effects of processing methods upon mechanical and biologic properties of porcine dermal extracellular matrix scaffolds. Biomaterials 2010;31:8626-33. doi:10.1016/j. biomaterials.2010.07.083.
  • 32. Dong X, Wei X, Yi W, Gu C, Kang X, Liu Y, et al. RGDmodified acellular bovine pericardium as a bioprosthetic scaffold for tissue engineering. Journal of Materials Science Materials in Medicine 2009;20:2327-36. doi:10.1007/s10856-009-3791-4.
  • 33. Patel N, Solanki E, Picciani R, Cavett V, CaldwellBusby JA, Bhattacharya SK. Strategies to recover proteins from ocular tissues for proteomics. Proteomics 2008;8:1055-70. doi:10.1002/pmic.200700856.
  • 34. Alhamdani MSS, Schroder C, Werner J, Giese N, Bauer A, Hoheisel JD. Single-step procedure for the isolation of proteins at near-native conditions from mammalian tissue for proteomic analysis on antibody microarrays. Journal of Proteome Research 2010;9:963-71. doi:10.1021/pr900844q.
  • 35. Elder BD, Kim DH, Athanasiou KA. Developing an articular cartilage decellularization process toward facet joint cartilage replacement. Neurosurgery 2010;66:722-7; discussion 727. doi:10.1227/01. NEU.0000367616.49291.9F.
  • 36. Gorschewsky O, Klakow A, Riechert K, Pitzl M, Becker R. Clinical comparison of the Tutoplast allograft and autologous patellar tendon (bonepatellar tendon-bone) for the reconstruction of the anterior cruciate ligament: 2- and 6-year results. The American Journal of Sports Medicine 2005;33:1202-9. doi:10.1177/0363546504271510.
  • 37. Cole MBJ. Alteration of cartilage matrix morphology with histological processing. Journal of Microscopy 1984;133:129-40.
  • 38. Petersen TH, Calle EA, Zhao L, Lee EJ, Gui L, Raredon MB, et al. Tissue-engineered lungs for in vivo implantation. Science (New York, NY) 2010;329:538- 41. doi:10.1126/science.1189345.
  • 39. Yang B, Zhang Y, Zhou L, Sun Z, Zheng J, Chen Y, et al. Development of a porcine bladder acellular matrix with well-preserved extracellular bioactive factors for tissue engineering. Tissue Engineering Part C, Methods 2010;16:1201-11. doi:10.1089/ten.TEC.2009.0311.
  • 40. Xu H, Xu B, Yang Q, Li X, Ma X, Xia Q, et al. Comparison of decellularization protocols for preparing a decellularized porcine annulus fibrosus scaffold. PLoS ONE 2014;9:1-13. doi:10.1371/journal.pone.0086723.
  • 41. Brown BN, Freund JM, Han L, Rubin JP, Reing JE, Jeffries EM, et al. Comparison of three methods for the derivation of a biologic scaffold composed of adipose tissue extracellular matrix. Tissue Engineering Part C, Methods 2011;17:411-21. doi:10.1089/ten. TEC.2010.0342.
  • 42. Xu H, Wan H, Sandor M, Qi S, Ervin F, Harper JR, et al. Host response to human acellular dermal matrix transplantation in a primate model of abdominal wall repair. Tissue Engineering Part A 2008;14:2009-19. doi:10.1089/ten.tea.2007.0316.
  • 43. Klebe RJ. Isolation of a collagen-dependent cell attachment factor. Nature 1974;250:248-51.
  • 44. Gailit J, Ruoslahti E. Regulation of the fibronectin receptor affinity by divalent cations. The Journal of Biological Chemistry 1988;263:12927-32.
  • 45. Gui L, Chan S a, Breuer CK, Niklason LE. Novel utilization of serum in tissue decellularization. Tissue Engineering Part C, Methods 2010;16:173-84. doi:10.1089/ten.tec.2009.0120.
  • 46. Wicha MS, Lowrie G, Kohn E, Bagavandoss P, Mahn T. Extracellular matrix promotes mammary epithelial growth and differentiation in vitro. Proceedings of the National Academy of Sciences of the United States of America 1982;79:3213-7.
  • 47. Reing JE, Brown BN, Daly KA, Freund JM, Gilbert TW, Hsiong SX, et al. The effects of processing methods upon mechanical and biologic properties of porcine dermal extracellular matrix scaffolds. Biomaterials 2010;31:8626-33. doi:10.1016/j. biomaterials.2010.07.083.
  • 48. Song JJ, Ott HC. Organ engineering based on decellularized matrix scaffolds. Trends in Molecular Medicine 2011;17:424-32. doi:10.1016/j. molmed.2011.03.005.
  • 49. Fermor HL, Russell SL, Williams S, Fisher J, Ingham E. Development and characterisation of a decellularised bovine osteochondral biomaterial for cartilage repair. Journal of Materials Science Materials in Medicine 2015;26:186. doi:10.1007/s10856-015-5517-0.
  • 50. Hogg P, Rooney P, Leow-Dyke S, Brown C, Ingham E, Kearney JN. Development of a terminally sterilised decellularised dermis. Cell and Tissue Banking 2015;16:351-9. doi:10.1007/s10561-014-9479-0.
  • 51. Zheng MH, Chen J, Kirilak Y, Willers C, Xu J, Wood D. Porcine small intestine submucosa (SIS) is not an acellular collagenous matrix and contains porcine DNA: possible implications in human implantation. Journal of Biomedical Materials Research Part B, Applied Biomaterials 2005;73:61-7. doi:10.1002/jbm.b.30170.
  • 52. Nagata S, Hanayama R, Kawane K. Autoimmunity and the clearance of dead cells. Cell 2010;140:619-30. doi:10.1016/j.cell.2010.02.014.
  • 53. Gouk S-S, Lim T-M, Teoh S-H, Sun WQ. Alterations of human acellular tissue matrix by gamma irradiation: histology, biomechanical property, stability, in vitro cell repopulation, and remodeling. Journal of Biomedical Materials Research Part B, Applied Biomaterials 2008;84:205-17. doi:10.1002/jbm.b.30862.
  • 54. Moroni F, Mirabella T. Decellularized matrices for cardiovascular tissue engineering. American Journal of Stem Cells 2014;3:1-20. doi:10.1517/14712598.2010.5 34079.
  • 55. Zhou J, Ye X, Wang Z, Liu J, Zhang B, Qiu J, et al. Development of decellularized aortic valvular conduit coated by heparin-sdf-1? multilayer. Annals of Thoracic Surgery 2015;99:612-8. doi:10.1016/j. athoracsur.2014.09.001.