ANTİMİKROBİYAL PEPTİTLERİN PROİNFLAMATUVAR YANITTAKİ POTANSİYELLERİ

Günümüzde yara iyileşmesi üzerine yapılan bir çokçalışma bulunmaktadır. Yara iyileşmesinde etkili olduğu kanıtlanan bir çok etken madde ve farmasötik dozaj şekli tanımlanmıştır. Antimikrobiyal peptitler (AMP)insanların, hayvanların ve bitkilerin bir çok doku ve organları tarafından üretilen peptitlerdir ve doğal immünsistemin yadsınamaz savaşçılarıdır. AMP’ler; antibakteriyel, antiviral, antifungal, antiparazitik, insektisidal,kemotaktik, yara iyileşmesi ve büyüme uyarıcı olarakpek çok etkiye sahip olabilmektedirler. AMP’lerin, proinflamatuvar yanıttaki potansiyelleri üzerine yapılanpek çok çalışma bulunmaktadır. AMP’ler yara iyileşmesinde rol almalarının yanı sıra bir çok insan dermalhastalığında da önemli bir potansiyel taşımaktadırlar.Bu yazıda proinflamatuvar yanıtın bir parçası olanyara iyileşme sürecinde gerçekleşen birbiri ile bağlantılı basamaklar açıklanmış ve bu basamaklarda AMP‘lerin aldıkları roller ve önemlerinden bahsedilmiştir;ayrıca insan dermal hastalıklarındaki potansiyellerininaraştırıldığı çalışmalara da değinilmiştir.

THE POTENTIALS OF ANTIMICROBIAL PEPTIDES IN PROINFLAMATORY RESPONSE

Nowadays, there are many studies on wound healing. A number of active agents, drugs and different pharmaceutical dosage forms have been described which have proven effective in wound healing. Antimicrobial peptides (AMPs) are small peptides produced by different tissues and organs of humans, animals and plants. AMPs are undeniable fighters of the innate immune system. They are multifunctional properties such as antibacterial, antiviral, antifungal, antiparasitic, insecticidal, chemotactic, wound healing and growth stimulants. There are many studies on the potential of AMPs in proinflammatory response. AMPs have an important potential for wound healing as well as many human dermal diseases. In this review, the wound healing process are explained and the roles and importance of AMPs are mentioned in these process; also the studies investigating their potential in human dermal diseases are mentioned.

___

  • 1. Aşkar Ş, Aşkar TK. Anti̇mi̇krobi̇yel protei̇nler ve bağışıklıktaki önemi̇. Balıkesir Sağlık Bilim Derg. 2017;6(2):82-86. doi:10.5505/bsbd.2017.13002
  • 2. Dubois RJ. Studies on a bactericidal agent extracted from a soil Bacillus. J Exp Med. 1939;70(1):1-10. doi:10.1084/ jem.70.3.249
  • 3. Galton F. Letters to the editors - Pangenesis. Nature. 1871;4(79):5-6.
  • 4. Van Epps HL. René Dubos: Unearthing antibiotics. J Exp Med. 2006;203(2):259. doi:10.1084/jem.2032fta
  • 5. Dubos RJ, Hotchkiss RD. The Production Of Bactericidal Substances By Aerobic Sporulating Bacilli. 1941:629-640.
  • 6. Rammelkamp CH, Weinstein L. Toxic effects of tyrothricin, gramicidin and tyrocidine. J Infect Dis. 1942. doi:10.1093/infdis/71.2.166
  • 7. Balls AK., Hale WS, Harris TH. A crystalline protein obtained from a lipoprotein of wheat flour. Cereal Chem. 1942;19:279- 288.
  • 8. Ohtani K, Okada T, Yoshizumi H, Kagamiyama H. Complete primary structures of two subunits of purothionin A, a lethal protein for brewer’s yeast from wheat flour. J Biochem. 1977. doi:10.1093/oxfordjournals.jbchem.a131752
  • 9. Hirsch JG. Phagocytin: A bactericidal substance from polymorphonuclear leucocytes. J Exp Med. 2004. doi:10.1084/ jem.103.5.589
  • 10. Groves ML, Peterson RF, Kiddy CA. Polymorphism in the red protein isolated from milk of individual cows. Nature. 1965. doi:10.1038/2071007a0
  • 11. Zeya HI, Spitznagel JK. Antibacterial and enzymic basic proteins from leukocyte lysosomes: Separation and identification. Science (80- ). 1963;142(3595):1085-1087. doi:10.1126/science.142.3595.1085
  • 12. Schauber J, Gallo RL. Antimicrobial peptides and the skin immune defense system. J Allergy Clin Immunol. 2008. doi:10.1016/j.jaci.2008.03.027
  • 13. Zasloff M. Antimicrobial peptides of multicellular organisms. Nature. 2002;415(6870):389-395. doi:10.1038/415389a
  • 14. Radek K, Gallo R. Antimicrobial peptides: natural effectors of the innate immune system. Semin Immunopathol. 2007;29(1):27-43.
  • 15. Conlon JM, Sonnevend A. Antimicrobial peptides in frog skin secretions. Methods Mol Biol. 2010;618:3-14. doi:10.1007/978- 1-60761-594-1_1
  • 16. Ma Y, Liu C, Liu X, et al. Peptidomics and genomics analysis of novel antimicrobial peptides from the frog, Rana nigrovittata. Genomics. 2010;95(1):66-71. doi:10.1016/j.ygeno.2009.09.004
  • 17. Akkaya A. Antimikrobiyal Peptitlerin Yapıları ve Etki Mekanizmaları. İzmir; 2017.
  • 18. Hancock REW, Chapple DS. Minireview Peptide antibiotics. Antimicrob Agents Chemother. 1999;43(6):1317-1323.
  • 19. Lai Y, Gallo RL. AMPed up immunity: how antimicrobial peptides have multiple roles in immune defense. Trends Immunol. 2009;30(3):131-141. doi:10.1016/j.it.2008.12.003
  • 20. Westerhoff H V., Juretic D, Hendler RW, Zasloff M. Magainins and the disruption of membrane-linked free-energy transduction. Proc Natl Acad Sci. 1989;86(17):6597-6601. doi:10.1073/ pnas.86.17.6597
  • 21. Bahar AA, Ren D. Antimicrobial Peptides. Pharmaceuticals. 2013;28(6):1543-1575. doi:10.3390/ph6121543
  • 22. Dong GL, Hee NK, Park Y, et al. Design of novel analogue peptides with potent antibiotic activity based on the antimicrobial peptide, HP (2-20), derived from N-terminus of Helicobacter pylori ribosomal protein L1. Biochim Biophys Acta - Protein Struct Mol Enzymol. 2002;1598(1-2):185-194. doi:10.1016/S0167- 4838(02)00373-4
  • 23. Fernández-Vidal M, Jayasinghe S, Ladokhin AS, White SH. Folding Amphipathic Helices Into Membranes: Amphiphilicity Trumps Hydrophobicity. J Mol Biol. 2007;370(3):459-470. doi:10.1016/j.jmb.2007.05.016
  • 24. Mor A, Nicolas P. Isolation and structure of novel defensive peptides from frog skin. Eur J Biochem. 1994;219(1-2):145- 154. doi:10.1111/j.1432-1033.1994.tb19924.x
  • 25. Mahlapuu M, Håkansson J, Ringstad L, Björn C. Antimicrobial Peptides: An Emerging Category of Therapeutic Agents. Front Cell Infect Microbiol. 2016;6(194). doi:10.3389/ fcimb.2016.00194
  • 26. Shai Y, Oren Z. From “carpet” mechanism to de-novo designed diastereomeric cell-selective antimicrobial peptides. Peptides. 2001;22(10):1629-1641. doi:10.1016/S0196-9781(01)00498-3
  • 27. Yeaman MR, Yount NY. Mechanisms of antimicrobial peptide action and resistance. Pharmacol Rev. 2003;55(1):27-55. doi:10.1124/pr.55.1.2
  • 28. Hara T, Mitani Y, Tanaka K, et al. Heterodimer formation between the antimicrobial peptides magainin 2 and PGLa in lipid bilayers: A cross-linking study. Biochemistry. 2001;40(41):12395- 12399. doi:10.1021/bi011413v
  • 29. Kamysz W, Okrój M, Łukasiak J. Novel properties of antimicrobial peptides. Acta Biochim Pol. 2003;50(2):461-469. doi:10.1016/j.ijheatmasstransfer.2017.04.069
  • 30. Patton Jr. JH, Fabian TC. Complex pancreatic injuries. Surg Clin North Am. 1996.
  • 31. Robson MC, Steed DL, Franz MG. Wound healing: Biologic features and approaches to maximize healing trajectories. Curr Probl Surg. 2001;38(2):72-140. doi:10.1067/msg.2001.111167
  • 32. Eming SA, Martin P, Tomic-Canic M. Wound repair and regeneration: Mechanisms, signaling, and translation. Sci Transl Med. 2014;6. doi:10.1126/scitranslmed.3009337
  • 33. Larouche J, Sheoran S, Maruyama K, Martino MM. Immune regulation of skin wound healing: Mechanisms and novel therapeutic targets. Adv Wound Care. 2018;7(7):209-231. doi:10.1089/wound.2017.0761
  • 34. Diegelmann RF, Evans MC. Wound healing: An overview of acute, fibrotic and delayed healing. Front Biosci. 2004;9:283- 289. doi:10.2741/1184
  • 35. Julier Z, Park AJ, Briquez PS, Martino MM. Promoting tissue regeneration by modulating the immune system. Acta Biomater. 2017;53:13-28. doi:10.1016/j.actbio.2017.01.056
  • 36. Delavary BM, van der Veer WM, van Egmond M, Niessen FB, Beelen RHJ. Macrophages in skin injury and repair. Immunobiology. 2011;216(7):753-762. doi:10.1016/j.imbio.2011.01.001
  • 37. Szpaderska AM, Egozi EI, Gamelli RL, DiPietro LA. The effect of thrombocytopenia on dermal wound healing. J Invest Dermatol. 2003;120(6):1130-1137. doi:10.1046/j.1523- 1747.2003.12253.x
  • 38. Martin P, Leibovich SJ. Inflammatory cells during wound repair: The good, the bad and the ugly. Trends Cell Biol. 2005;15(11):599-607. doi:10.1016/j.tcb.2005.09.002
  • 39. Deppermann C, Cherpokova D, Nurden P, et al. Gray platelet syndrome and defective thrombo-inflammation in Nbeal2-deficient mice. J Clin Invest. 2013;123(8):3331-3342. doi:10.1172/ JCI69210
  • 40. Kolaczkowska E, Kubes P. Neutrophil recruitment and function in health and inflammation. Nat Rev Immunol. 2013;13(3):159- 175. doi:10.1038/nri3399
  • 41. Brinkmann V, Reichard U, Goosmann C, et al. Neutrophil Extracellular Traps Kill Bacteria. Science. 2004;303(5663):1532- 1535. doi:10.1126/science.1092385
  • 42. Wilgus TA, Roy S, McDaniel JC. Neutrophils and Wound Repair: Positive Actions and Negative Reactions. Adv Wound Care. 2013;2(7):379-388. doi:10.1089/wound.2012.0383
  • 43. Willenborg S, Eming SA. Macrophages - sensors and effectors coordinating skin damage and repair. JDDG J der Dtsch Dermatologischen Gesellschaft. 2014;12(3):214-221. doi:10.1111/ ddg.12290
  • 44. MacDonald KPA, Palmer JS, Cronau S, et al. An antibody against the colony-stimulating factor 1 receptor depletes the resident subset of monocytes and tissue- and tumor-associated macrophages but does not inhibit inflammation. Blood. 2010;116(19):3955-3963. doi:10.1182/blood-2010-02-266296
  • 45. Murray PJ, Allen JE, Biswas SK, et al. Macrophage Activation and Polarization: Nomenclature and Experimental Guidelines. Immunity. 2014;41(1):14-20. doi:10.1016/j.immuni.2014.06.008
  • 46. DiPietro LA, Polverini PJ. Role of the macrophage in the positive and negative regulation of wound neovascularization. Behring Inst Mitt. 1993;Aug(92):238-247.
  • 47. Jetten N, Verbruggen S, Gijbels MJ, Post MJ, De Winther MPJ, Donners MMPC. Anti-inflammatory M2, but not pro-inflammatory M1 macrophages promote angiogenesis in vivo. Angiogenesis. 2014;17(1):109-118. doi:10.1007/s10456-013-9381-6
  • 48. Boman HG. Innate immunity and the normal microflora. Immunol Rev. 2000;Feb(173):5-16. doi:10.1034/j.1600- 065X.2000.917301.x
  • 49. Harder J, Bartels J, Christophers E, Schroder JM. A peptide antibiotic from human skin. Nature. 1997;387(6636):861. doi:10.1038/43088
  • 50. Frohm M, Agerberth B, Ahangari G, et al. The expression of the gene coding for the antibacterial peptide LL-37 is induced in human keratinocytes during inflammatory disorders. J Biol Chem. 1997;272(24):15258-15263. doi:10.1074/jbc.272.24.15258
  • 51. Duplantier AJ, van Hoek ML. The human cathelicidin antimicrobial peptide LL- 37 as a potential treatment for polymicrobial infected wounds. Front Immunol. 2013;4(143). doi:10.3389/ fimmu.2013.00143
  • 52. Sorensen OE, Cowland JB, Theilgaard-Monch K, Liu L, Ganz T, Borregaard N. Wound Healing and Expression of Antimicrobial Peptides/Polypeptides in Human Keratinocytes, a Consequence of Common Growth Factors. J Immunol. 2014;170(11):5583- 5589. doi:10.4049/jimmunol.170.11.5583
  • 53. Nijnik A, Pistolic J, Filewod NCJ, Hancock REW. Signaling pathways mediating chemokine induction in keratinocytes by cathelicidin LL-37 and flagellin. J Innate Immun. 2012;4(4):377- 386. doi:10.1159/000335901
  • 54. Chamorro CI, Weber G, Grönberg A, Pivarcsi A, Ståhle M. The human antimicrobial peptide LL-37 suppresses apoptosis in keratinocytes. J Invest Dermatol. 2009;129(4):937-944. doi:10.1038/jid.2008.321
  • 55. Carretero M, Escámez MJ, García M, et al. In vitro and in vivo wound healing-promoting activities of human cathelicidin LL37. J Invest Dermatol. 2008;128(1):223-236. doi:10.1038/sj. jid.5701043
  • 56. Braff MH, Hawkins MA, Nardo A Di, et al. Structure-Function Relationships among Human Cathelicidin Peptides: Dissociation of Antimicrobial Properties from Host Immunostimulatory Activities. J Immunol. 2005;174(7):4271-4278. doi:10.4049/ jimmunol.174.7.4271
  • 57. Tomasinsig L, Pizzirani C, Skerlavaj B, et al. The human cathelicidin LL-37 modulates the activities of the P2X 7 receptor in a structure-dependent manner. J Biol Chem. 2008;283(45):30471-30481. doi:10.1074/jbc.M802185200
  • 58. Shaykhiev R, Beißwenger C, Kändler K, et al. Human endogenous antibiotic LL-37 stimulates airway epithelial cell proliferation and wound closure. Am J Physiol - Lung Cell Mol Physiol. 2005;289(5):842-848. doi:10.1152/ajplung.00286.2004
  • 59. Girnita A, Zheng H, Grönberg A, Girnita L, Sthle M. Identification of the cathelicidin peptide LL-37 as agonist for the type i insulin-like growth factor receptor. Oncogene. 2012;31(3):352- 365. doi:10.1038/onc.2011.239
  • 60. Jung Kim D, Lee YW, Park MK, et al. Efficacy of the designer antimicrobial peptide SHAP1 in wound healing and wound infection. Amino Acids. 2014;46(10):2333-2343. doi:10.1007/ s00726-014-1780-5
  • 61. Steinstraesser L, Hirsch T, Schulte M, et al. Innate defense regulator peptide 1018 in wound healing and wound infection. PLoS One. 2012. doi:10.1371/journal.pone.0039373
  • 62. Pfalzgraff A, Brandenburg K, Weindl G. Antimicrobial peptides and their therapeutic potential for bacterial skin infections and wounds. Front Pharmacol. 2018;9(281). doi:10.3389/fphar.2018.00281
  • 63. Ramos R, Silva JP, Rodrigues AC, et al. Wound healing activity of the human antimicrobial peptide LL37. Peptides. 2011;32(7):1469-1476. doi:10.1016/j.peptides.2011.06.005
  • 64. Rivas-Santiago B, Trujillo V, Montoya A, et al. Expression of antimicrobial peptides in diabetic foot ulcer. J Dermatol Sci. 2012;65(1):19-26. doi:10.1016/j.jdermsci.2011.09.013
  • 65. Takahashi T, Gallo RL. The Critical and Multifunctional Roles of Antimicrobial Peptides in Dermatology. Dermatol Clin. 2017;35(1):39-50. doi:10.1016/j.det.2016.07.006
  • 66. Lande R, Chamilos G, Ganguly D, et al. Cationic antimicrobial peptides in psoriatic skin cooperate to break innate tolerance to self-DNA. Eur J Immunol. 2015;45(1):2013-2213. doi:10.1002/ eji.201344277
  • 67. Niyonsaba F, Kiatsurayanon C, Chieosilapatham P, Ogawa H. Friends or Foes? Host defense (antimicrobial) peptides and proteins in human skin diseases. Exp Dermatol. 2017;26(11):989- 998. doi:10.1111/exd.13314
  • 68. Kiatsurayanon C, Niyonsaba F, Smithrithee R, et al. Host defense (antimicrobial) peptide, human β-defensin-3, improves the function of the epithelial tight-junction barrier in human keratinocytes. J Invest Dermatol. 2014;134(8):2163-2173. doi:10.1038/jid.2014.143
Süleyman Demirel Üniversitesi Tıp Fakültesi Dergisi-Cover
  • ISSN: 1300-7416
  • Yayın Aralığı: Yılda 4 Sayı
  • Başlangıç: 1994
  • Yayıncı: SDÜ Basımevi / Isparta
Sayıdaki Diğer Makaleler

SAUNA KULLANIMI SONRASI GELİŞEN AKUT SOLUNUM YETMEZLİĞİ OLGUSU

Münire ÇAKIR, Şehnaz EVRİMLER

KARPAL TÜNEL SENDROMUNDA ULTRASONOGRAFİ VE MANYETİK REZONANS GÖRÜNTÜLEMENİN TANIYA KATKILARI

Sinan DENİZ, Aylin ALTAN

DEVELOPING A MATHEMATICAL FORMULA TO ESTIMATE OCCLUSAL VERTICAL DIMENSION

Nurullah TÜRKER, Ulviye Şebnem BÜYÜKKAPLAN, Mehmet Mustafa ÖZARSLAN, Mutlu ÖZCAN

ÜÇ BOYUTLU (3D) LAPAROSKOPİK KOLESİSTEKTOMİ; ISPARTA ŞEHİR HASTANESİ’NDEKİ BAŞLANGIÇ DENEYİMİMİZ

Girayhan ÇELİK

MICROSURGICAL ANATOMY OF THE CONNECTIONS OF CAUDATE NUCLEUS AND PSYCHOSURGICAL CONSIDERATIONS : A UNIQUE CADAVER STUDY

Hüseyin BİÇEROĞLU

FREQUENCY OF IRON DEFICIENCY AND IRON DEFICIENCY ANEMIA IN FIBROMYALGIA SYNDROME

Fatih BAYGUTALP, Duygu ALTINTAŞ, Ayhan KUL

BİR GÖZ HASTALIKLARI UZMANINCA ASKERLİĞE ELVERİŞSİZ OLDUĞU KARARI VERİLEN YÜKÜMLÜLERİN ETİYOLOJİK DEĞERLENDİRMESİ

Umut KARACA, Gülşah USTA

ASSESSMENT OF LEFT VENTRICULAR FUNCTIONS WITH STRAIN AND STRAIN RATE ECHOCARDIOGRAPHY IN CHILDREN WITH DUCHENNE MUSCULAR DYSTROPHY

Mahmut KESKİN, Özben CEYLAN, Senem ÖZGÜR, Utku Arman ÖRÜN, Vehbi DOĞAN, Osman YILMAZ, Filiz ŞENOCAK, Selmin KARADEMİR

FOLİKÜLER MÜSİNÖZ: OLGU SUNUMU

Gamze ERKILINÇ, Selma KORKMAZ, İbrahim Metin ÇİRİŞ, Nermin KARAHAN, Sevda GEREK ÇELİKDEN, İjlal ERTURAN, Mehmet YILDIRIM

İNSAN AMNİOTİK SIVISI VE MEMBRANININ SIÇAN KIRIK MODELİNDE KIRIK İYİLEŞMESİNE ETKİLERİ

Alper GÜLTEKİN, Mehtat ÜNLÜ, Safa SATOĞLU, A. Meriç ÜNAL