Nanoselüloz İçeren Polimetil Metakrilat Kemik Çimentoları: Üretim Prosesinin ve Silanizasyonun Mekanik Özelliklere Etkisi

Amaç: Kemik çimentosu, kalça implantlarını sabitlemek için klinik uygulamalarda gerekli ortopedik malzemelerden biridir. Bununla birlikte, kemik çimentosu kullanımı, implantasyon bölgesi ile mekanik uyumsuzluk gibi bazı sınırlamalara tabidir. Bu sınırlamaların üstesinden gelmek için bazı dolgu maddelerinin ve kemik çimentosu formülasyonlarının kullanılmasına rağmen, daha iyi çözümlere hala ihtiyaç vardır. Nanoselülozun (NC), doğal, kristal ve güçlü yapısı sayesinde kemik çimentoları ile formülasyon oluşturmada başarılı sonuçlar vermesi mümkündür. Materyal-Metot: Bu çalışmada, değişik yöntemlerle üretilen NC içeren kemik çimentolarının mekanik performansı ve kemik çimentosundaki değişken oranları incelenmiştir. Ayrıca, silanizasyon yöntemiyle karşılaştırmalı bir çalışma ile kompozit teknolojide fazlar arası uyumluluğun arttırılması için kullanılan ve aynı oranların silanize edilmiş ve silanize edilmemiş NC partiküllerin kemik çimentosu formülasyonlarında kullanılması araştırılmıştır. Bulgular: BC-1SNC dışındaki tüm numunelerin sıkıştırma testlerinde şekil deformasyonu öncesi yüklenen maksimum kuvvetler (Fmax), anlamlı derecede farklı değildir (p>0,05). BC- 1SNC, Fmax’ı %12,6 artıran sıkıştırma direncini iyileştirmiştir (p

Nanocellulose Containing Polymethyl Methacrylate Bone Cements: Effect of Production Process and Silanization on Mechanical Characteristics

Objective: Bone cement is one of the essential orthopedicmaterials in clinical applications for fixing hip implants.However, the use of bone cement is subject to some limitationslike mechanical mismatch with the implantation site. Despitethe use of some fillers and bone cement formulations to tacklethese limitations, there is still a need for better solutions. It ispossible for nanocellulose (NC) to yield successful results increating a formulation with bone cements thanks to its natural,crystal and strong structure.Material-Method: In this study, the mechanical performanceof bone cements containing NC that is produced with varyingmethods, and varying ratios in bone cement was examined.Moreover, a comparative study by the silanization method; whichis used for enhancing the inter-phase compatibility in compositetechnology; and employing the same ratios in NC formulationswith silanized and non-silanized particles was conducted.Results: The maximum forces (Fmax) loading before shapedeformation in compression tests of all samples except BC-1SNC were not significantly different (p>0.05). BC-1SNCimproved the compression resistance increasing the Fmax by12.6% (p

___

  • 1. Markets and Markets Reports. Global Orthopedics Devices Market (2011 – 2016), published in 2011.
  • 2. Lee IJ, Choi AL, Yie MY, Yoon JY, Jeon EY, Koh SH, Yoon DY, Lim KJ, Im HJ. CT evaluation of local leakage of bone cement after percutaneous kyphoplasty and vertebroplasty. Acta Radiol 2010; 51: 649-54.
  • 3. Masala S, Nano G, Marcia S, Muto M, Fucci FP, Simonetti G. Osteoporotic vertebral compression fractures augmentation by injectable partly resorbable ceramic bone substitute (CeramentTM|SPINE SUPPORT): a prospective nonrandomized study. Neuroradiology 2012; 54: 589-96.
  • 4. Boger A, Wheeler K, Montali A, Gruskin EJ. NMPModified PMMA bone cement with adapted mechanical and hardening properties for the use in cancellous bone augmentation. Biomed Mater Res Part B Appl Biomater 2008; 90: 760-66.
  • 5. Hu X, Zhai X, Hirt T. A New Concept for More Biocompliant bone cement for vertebroplasty and kyphoplasty. Macromol Biosci 2009; 9: 195-202.
  • 6. Wolff KD, Swaid S, Nolte D, Böckmann RA, Hölzle F, Müller-Mai CJ. Degradable injectable bone cement in maxillofacial surgery: Indications and clinical experience in 27 patients. Cranio-Maxillofacial Surg 2004; 32: 71-9.
  • 7. O’Brien S, Bennett D, Blair PH, Beverland DE. Femoral nerve compression after migration of bone cement to the groin after hip arthroplasty. J Arthroplasty 2011; 26: 11-13.
  • 8. Husby OS, Haugan K, Benum P Foss, OA. A prospective randomized radiostereometric analysis trial of SmartSet HV and Palacos R bone cements in primary total hip arthroplasty. J Orthop Traumatol 2010; 11: 29-35.
  • 9. Randelli P, Evola FR, Cabitza P, Polli L, Denti M, Vaienti L. Prophylactic use of antibiotic-loaded bone cement in primary total knee replacement. Knee Surg Sports Traumatol Arthrosc 2010; 18: 181-6.
  • 10. Atkinson HD, Ranawat VS, Oakeshott RDJ. Granuloma debridement and the use of an injectable calcium phosphate bone cement in the treatment of osteolysis in an uncemented total knee replacement. Orthop Surg Res 2010; 5: 1-6.
  • 11. Deb S, Vazquez B. The effect of cross-linking agents on acrylic bone cements containing radiopacifiers. Biomaterials 2001; 22: 2177-81.
  • 12. May-Pat A, Herrera-Kao W, Cauich-Rodríguez JV, Cervantes-Uc JM, Flores-Gallardo SGJ. Comparative study on the mechanical and fracture properties of acrylic bone cements prepared with monomers containing amine groups. Mech Behav Biomed Mater 2012; 6: 95-105.
  • 13. Cervantes-Uc JM, Vázquez-Torres H, Cauich-Rodríguez JV, Vázquez-Lasa B, San Román del Barrio J. Comparative study on the properties of acrylic bone cements prepared with either aliphatic or aromatic functionalized methacrylates. Biomaterials 2005; 26: 4063-72.
  • 14. Nien YH, Chen J. Studies of the mechanical and thermal properties of cross-linked poly(methylmethacrylate-acrylic acid-allylmethacrylate)-modified bone cement. J Appl Polym Sci 2006; 100: 3727-32.
  • 15. Perek J, Pilliar RM. Fracture thoughness of composite acrylic bone cement. J Mater Sci Mater Med 1992; 3: 333-44.
  • 16. Vallo CI, Montemartini PE, Fanovich López JMP, Cuadrado TR. Poly(methyl methacrylate)-based bone cement modified with hydroxyapatite. J Biomed Mater Res 1999; 48: 150-8.
  • 17. Sogal A, Hulbert SF. Mechanical properties of a composite bone cement: polymethylmethacrylate and hydroxyapatite. Bioceramics 1992; 5: 213-24.
  • 18. Harper EJ, Braden M, Bonfield W. Mechanical properties of hydroxyapatite reinforced poly(ethylmethacrylate) bone cement after immersion in a physiological solution: Influence of a silane coupling agent. J Mater Sci Mater Med 2000; 11: 491-7.
  • 19. Vázquez B, Ginebra MP, Gil X, Planell JA, San Román J. Acrylic bone cements modified with β-TCP particles encapsulated with poly(ethylene glycol). Biomaterials 2005; 26: 4309-16.
  • 20. Ávila-Ortega A, Escamilla-Coral MI, Cervantes-Uc JM. Optimization of methyl methacrylate inductively coupled plasma surface modification of zro2 particles used in acrylic bone cement formulations. Polym – Plast Technol Eng 2017; 56: 777-87.
  • 21. Lin N, Dufresne A. Nanocellulose in biomedicine: Current status and future prospect. Eur Polym J 2014; 59: 302-25.
  • 22. Wang S, Feng Q, Sun J, Gao F, Fan W, Zhang Z, Li X, Jiang X. Nanocrystalline cellulose improves the biocompatibility and reduces the wear debris of ultrahigh molecular weight polyethylene via weak binding. ACS Nano 2016; 10: 298- 306.
  • 23. Dong H, Sliozberg YR, Snyder JF, Steele J, Chantawansri TL, Orlicki JA, Walck SD, Reiner RS, Rudie AW. Highly transparent and toughened poly(methyl methacrylate) nanocomposite films containing networks of cellulose nanofibrils. ACS Appl Mater Interfaces 2015; 7: 25464-72.
  • 24. Yin Y, Tian X, Jiang X, Wang H, Gao W. Modification of cellulose nanocrystal via SI-ATRP of styrene and the mechanism of its reinforcement of polymethylmethacrylate. Carbohydr Polym 2016; 142: 206-12.
  • 25. Raquez J-M, Murena Y, Goffin A-L, Habibi Y, Ruelle B, DeBuyl F, Dubois P. Surface-modification of cellulose nanowhiskers and their use as nanoreinforcers into polylactide: A sustainably-integrated approach. Compos Sci Technol 2012; 72: 544-9.
  • 26. Tanir TE, Hasirci V, Hasirci N. Electrospinning of chitosan/ poly(lactic acid-co-glycolic acid)/hydroxyapatite composite nanofibrous mats for tissue engineering applications. Polym Bull 2014; 71: 2999-3016.
  • 27. Beck S, Bouchard J, Berry R. Dispersibility in water of dried nanocrystalline cellulose. Biomacromolecules 2012; 13: 1486-94.
  • 28. Yang H, Yan R, Chen H, Lee DH, Zheng C. Characteristics of hemicellulose, cellulose and lignin pyrolysis. Fuel 2007; 86: 1781-88.
  • 29. Haafiz MKM, Eichhorn SJ, Hassan A, Jawaid M. Isolation and characterization of microcrystalline cellulose from oil palm biomass residue. Carbohydr Polym 2013; 93: 628-34.
  • 30. Lu J, Askeland P, Drzal LT. Surface modification of microfibrillated cellulose for epoxy composite applications. Polymer 2008; 49: 1285-96.
  • 31. Lee C, Dazen K, Kafle K, Moore A, Johnson DK, Park S, Kim SH. in Cellulose chemistry and properties: Fibers, nanocelluloses and advanced materials; Rojas OJ, Eds.; Springer: London, 2016 pp. 122.
  • 32. Liu H, Liu H, Yao F, Wu Q. Fabrication and properties of transparent polymethylmethacrylate/cellulose nanocrystals composites. Bioresource Technol 2010; 101: 5685-92.
  • 33. Littunen K, Hippi U, Saarinen T, Seppälä J. Network formation of nanofibrillated cellulose in solution blended poly(methyl methacrylate) composites. Carbohydr Polym 2013; 91(1): 183-90.
  • 34. Aydemir Sezer U, Aksoy EA, Hasirci V, Hasirci N. Poly(ε-caprolactone) composites containing gentamicinloaded β-tricalcium phosphate/gelatin microspheres as bone tissue supports. J Appl Polym Sci 2013; 127: 2132-39.
  • 35. Eichhorn SJ, Dufresne A, Aranguren M, Marcovich NE, Capadona JR, Rowan SJ, Weder C, Thielemans W, Roman M, Renneckar S. Review: Current international research into cellulose nanofibers and nanocomposites. J Mater Sci 2010; 45: 1-33.
  • 36. Andresen M, Stenius P. Water-in-oil emulsions stabilized by hydrophobized microfibrillated cellulose. J Dispers Sci Technol 2007; 28: 837-44.
  • 37. Kenny SM, Buggy M. Bone cements and fillers: A review. J Mater Sci Mater Med 2003; 14: 923-38.
  • 38. Moon RJ, Martini A, Nairn J, Simonsenf J, Youngblood J. Cellulose nanomaterials review: structure, properties and nanocomposites. Chem Soc Rev 2011; 40: 3941–94.
  • 39. Kim J, Shim BS, Kim HS, Lee Y-J, Min S-K, Jang D, Abas Z, Kim J. Review of nanocellulose for sustainable future materials. Int J Precis Eng Manuf Tech 2015; 2: 197-213.
  • 40. Ioelovich M. Optimal conditions for isolation of nanocrystalline cellulose particles. Nanosci Nanotecnol 2012; 2: 9-13.
Süleyman Demirel Üniversitesi Sağlık Bilimleri Dergisi-Cover
  • ISSN: 2146-247X
  • Yayın Aralığı: Yılda 3 Sayı
  • Başlangıç: 2010
  • Yayıncı: Zehra ÜSTÜN
Sayıdaki Diğer Makaleler

Hipotiroidili Hastalarda Korneal Biyomekanik Özelliklerin Değerlendirilmesi

SEYFULLAH KAN, Uğur ACAR, Adnan KARAIBRAHIMOGLU, Merve İNANÇ, Muhammed KIZILGÜL, Selvihan BEYSEL, Erman ÇAKAL

Kardiyovasküler Cerrahi ve Koroner Yoğun Bakım Ünitesinden Taburcu Olan Hastaların Yoğun Bakım Deneyimlerinin Belirlenmesi

Hakan ÇAĞLIYAN, Gülten DAĞ

Mülteci Kadınlar ve Üreme Sağlığı: Sağlık Hizmetlerine Ulaşmalarını Etkileyen Faktörler, Engeller ve Çözüm Öneriler

Esra BÜKECİK, Sevil ŞAHİN, Halime ABAY, SENA KAPLAN, Ayten ARIÖZ DÜZGÜN

Soğuk Stres Uygulanan Ratlarda Nar Çiçeğinin (Punica Granatum) Plazma Antioksidan ve Oksidan Enzim Düzeyine Etkisi

Ruveyda Esra ERCİM, Tuğçe ATÇALI, Burhanettin BAYDAŞ

Nanoselüloz İçeren Polimetil Metakrilat Kemik Çimentoları: Üretim Prosesinin ve Silanizasyonun Mekanik Özelliklere Etkisi

Ümran AYDEMİR SEZER

Alzheimer Hastalarının Tedavisinde Potansiyel İlaç-İlaç Etkileşimleri

Mehtap SAVRAN, Özgür ÖNAL, Nihat ŞENGEZE, Halil AŞÇI, Serpil DEMİRCİ

Farklı Büyüme Paternine Sahip İskeletsel Sınıf III Vakalarda Maksiller Sinüs Boyutlarının Retrospektif Olarak İncelenmesi

Burak KALE, Muhammed Hilmi BÜYÜKÇAVUŞ

CIE L*a*b* Color Analyses of Anterior Maxillary Teeth According to Gender and Localization Variables

Caner ÇETİN, Erdal EROĞLU, Cenker KÜÇÜKEŞMEN, Özlem ÖZİŞÇİ

Akut Koroner Sendromu Olan Bireylerde CHA2DS2-VASc ve ATRIA Skorlarının Değerlendirilmesi

Fatih AKSOY, Ali BAĞCI

Ekokardiyografik Epikardiyal Yağ Dokusu Kalınlığı ile Klinik & Hematolojik Parametreler Arasındaki İlişki

İsmail ATEŞ