Hipotiroidili Hastalarda Korneal Biyomekanik Özelliklerin Değerlendirilmesi

Amaç: Hipotiroidizmin korneal biyomekanik değişikliklerle ilişkili olup olmadığını belirlemek. Materyal-Metot: Çalışmaya hipotiroidisi olan 48 hasta (çalışma grubu) ve 49 sağlıklı birey (kontrol grubu) alındı. Korneal histerezis (KH), korneal rezistans faktörü (KRF) ve göz içi basıncı (GİB) dahil olmak üzere korneal biyomekanik özellikler, oküler cevap analizörü (OCA) ile ölçüldü. GİB ayrıca Goldmann aplanasyon tonometresi (GAT) ve merkezi kornea kalınlığı (MKK) ultrasonik pakimetreyle ölçüldü. Çalışma ve kontrol grubu katılımcıları arasında OCA parametreleri ve MKK'daki farklılıklar analiz edildi. Bulgular: Çalışma grubunda ortalama KH, KRF sırasıyla 9.7 ± 1.2 mm Hg ve 9.8 ± 1.4 idi. Kontrol grubunda aynı değerler sırasıyla 10.0 ± 1.7 mm Hg ve 10.5 ± 2.0 idi. İki grup arasında KH ve KRF açısından istatistiksel olarak anlamlı fark yoktu (sırasıyla P=0.28 ve P=0.07). Korneal kompanzasyonlu GİB (17.0 ± 3.0 mm Hg’a karşın 17.8 ± 3.7 mm Hg, P = 0.25) ve Goldmann-korelasyonlu GİB (15.7 ± 3.2 mm Hg’a karşın 16.8 ± 4.3 mm Hg, P = 0.15) arasında anlamlı bir fark yoktu. MKK çalışma grubu gözlerinde 551.3 ± 36.9 µm, kontrol gözlerinde 552.1 ± 41.3 µm idi (P = 0.92). Sonuç: Çalışmamız hipotiroidizmin kornea biyomekanik parametreleri ve MKK değerlerini etkilemediğini göstermektedir. Kornea biyomekanik özelliklerinin GİB ölçümlerinin doğruluğu üzerindeki olası etkileri dikkate alınmadan hipotiroidi hastalarında GİB ölçümlerinin güvenle kullanılabileceği sonucuna vardık.

___

  • 1. Wiersinga WM. Hypothyroidism and Myxedema Coma. In: Jameson JL, De Groot LJ (eds). Endocrinology, Adult and pediatric. 6th edn. Philadelphia: Saunders, Elsevier. 2010;1607-1622.
  • 2. Bilous RW, Tunbridge WM. The epidemiology of hypothyroidism—an update. Baillieres Clin Endocrinol Metab. 1988; 2: 531–540.
  • 3. Brent GA. The molecular basis of thyroid hormone action. N Engl J Med. 1994;331: 847–853.
  • 4. Sarandol E, Tas S, Dirican M, Serdar Z. Oxidative stress and serum paraoxonase activity in experimental hypothyroidism: effect of vitamin E supplementation. Cell Biochem Funct. 2005; 23:1–8.
  • 5. Smith TJ, Bahn RS, Gorman CA. Connective tissue, glycosaminoglycans, and diseases of the thyroid. Endocr Rev. 1989;10: 366-391.
  • 6. Hertel G, Eineges tiber der Augendruck und Glaukom. Klin Monatsbl Augenheilkd .1920;64: 390-392.
  • 7. Smith KD, Tevaarwerk GJ, Allen LH. An ocular dynamic study supporting the hypothesis that hypothyroidism is a treatable cause of secondary open-angle glaucoma. Can J Ophthalmol. 1992;27: 341–344.
  • 8. Centanni M, Cesareo R, Verallo O. Reversible increase of intraocular pressure in subclinical hypothyroid patients. Eur J Endocrinol. 1997;136: 595–598.
  • 9. Smith KD, Arthurs BP, Saheb N. An association between hypothyroidism and primary open-angle glaucoma. Ophthalmology. 1993;100:1580 –1584.
  • 10. Gillow JT, Shah P, O’Neill EC. Primary open angle glaucoma and hypothyroidism: chance or true association? Eye. 1997;11: 113–114.
  • 11. Boles Carenini B, Mignone U, Vadala G, Gastaldi C, Favero C, Brogliatti B. Glaucoma and hypothyroidism. Acta Ophthalmol Scand Suppl. 1997; 224: 47–48.
  • 12. Jamsen K. Thyroid disease, a risk factor for optic neuropathy mimicking normal-tension glaucoma. Acta Ophthalmol Scand. 1996;74: 456–460.
  • 13. Girkin CA, McGwin G Jr, McNeal SF, Lee PP, Owsley C. Hypothyroidism and the development of open-angle glaucoma in a male population. Ophthalmology. 2004;111:1649 –1652.
  • 14. Lee AJ, Rochtchina E, Wang JJ, Healey PR, Mitchell P. Open-angle glaucoma and systemic thyroid disease in an older population: the Blue Mountains Eye Study. Eye (Lond). 2004;18: 600–608.
  • 15. Safran AB. Are only certain hypothyroid subjects predisposed to raised intraocular pressure? Eur J Endocrinol. 1997;136: 581–582.
  • 16. Cross JM, Girkin CA, Owsley C, McGwin G Jr. The association between thyroid problems and glaucoma. Br J Ophthalmol. 2008;92: 1503-1505.
  • 17. Munoz-Negrete FJ, Rebolleda G, Almodovar F, Díaz B, Varela C. Hypothyroidism and primary open-angle glaucoma. Ophthalmologica. 2000;214:347–349.
  • 18. Karadimas P, Bouzas EA, Topouzis F, Koutras DA, Mastorakos G. Hypothyroidism and glaucoma: a study of 100 hypothyroid patients. Am J Ophthalmol. 2001;131:126–128.
  • 19. Motsko SP, Jones JK. Is there an association between hypothyroidism and open-angle glaucoma in an elderly population? An epidemiologic study. Ophthalmology. 2008; 115:1581– 1584.
  • 20. Lin HC, Kang JH, Jiang YD, Ho JD. Hypothyroidism and the risk of developing open-angle glaucoma: a five-year population-based follow-up study. Ophthalmology. 2010;117:1960-1966.
  • 21. Çankaya AB, Kan S, Kizilgul M, Tokmak A, Inanc M, Caliskan M et al. Evaluation of biomechanical properties of the cornea in patients with primary hyperparathyroidism. Int Ophthalmol. 2017;37(3):519-524.
  • 22. Becker B, Holker AE, Ballin N: Thyroid function and glaucoma. Am J Ophthalmol. 1966; 61: 997-999.
  • 23. Mangouritsas G, Morphis G, Mourtzoukos S, Feretis E. Association between corneal hysteresis and central corneal thickness in glaucomatous and non-glaucomatous eyes. Acta Ophthalmol. 2009;87: 901–905.
  • 24. Abitbol O, Bouden J, Doan S, Hoang-Xuan T, Gatinel D. Corneal hysteresis measured with the Ocular Response Analyzer in normal and glaucomatous eyes. Acta Ophthalmol. 2010;88: 116–119.
  • 25. ElMallah MK, Asrani SG. New ways to measure intraocular pressure. Curr Opin Ophthalmol. 2008;19: 122–126.
  • 26. Luce DA. Determining in vivo biomechanical properties of the cornea with an ocular response analyzer. J Cataract Refract Surg. 2005;31: 156–162.
  • 27. Kotecha A. What biomechanical properties of the cornea are relevant for the clinician? Surv Ophthalmol. 2007;52(Suppl 2):S109–S114.
  • 28. Moreno-Montanes J, Maldonado MJ, Garcia N, Mendiluce L, Garcia-Gomez PJ, Segui-Gomez M. Reproducibility and clinical relevance of the ocular response analyzer in non-operated eyes: corneal biomechanical and tonometric implications. Invest Ophthalmol Vis Sci. 2008;49: 968–974.
  • 29. Fahnehjelm, Chen E, Winiarski J. Corneal hysteresis in mucopolysaccharidosis I and VI Acta Ophthalmol. 2012: 90: 445–448.
  • 30. Conrad AH, Zhang Y, Walker AR. Thyroxine affects ex¬pression of KSPG-related genes, the carbonic anhydrase II gene, and KS sulfation in the embryonic chicken cornea. Invest Oph¬thalmol Vis Sci. 2006;47: 120-132.
  • 31. Wells AP, Garway-Heath DF, Poostchi A, Wong T, Chan KC, Sachdev N. Corneal hysteresis but not corneal thickness correlates with optic nerve surface compliance in glaucoma patients. Invest Ophthalmol Vis Sci. 2008;49: 3262–3268.
  • 32. Gatzioufas Z, Thanos S. Acute keratoconus induced by hypothy¬roxinemia during pregnancy. J Endocrinol Invest. 2008;31:262- 266.
  • 33. Gatzioufas Z, Panos GD, Brugnolli E, Hafezi F. Corneal topographical and biomechanical variations associated with hypothyroidism. J Refract Surg. 2014; 30: 78-79.
  • 34. Bahçeci UA, Özdek Ş, Pehlivanlı Z, Yetkin İ, Önol M: Changes in intraocular pressure and corneal and retinal nerve fiber layer thicknesses in hypothyroidism. Eur J Ophthalmol. 2005;15: 556-561. 35. Ozturk BT, Kerimoglu H, Dikbas O, Pekel H, Gonen MS. Ocular changes in primary hypothyroidism. BMC Research Notes. 2009; 2:266.
  • 35. Ozturk BT, Kerimoglu H, Dikbas O, Pekel H, Gonen MS. Ocular changes in primary hypothyroidism. BMC Research Notes. 2009; 2:266.
Süleyman Demirel Üniversitesi Sağlık Bilimleri Dergisi-Cover
  • ISSN: 2146-247X
  • Yayın Aralığı: Yılda 3 Sayı
  • Başlangıç: 2010
  • Yayıncı: Zehra ÜSTÜN