İyonize Radyasyona Maruz Kalan Sıçan Ovaryumunda PARP-1 Ekspresyonu ve Follikülogenez Üzerine Curcuminin Koruyucu Etkisi

Amaç: Çalışmamızda, iyonize radyasyonun folliküleratrezi üzerine etkilerini göstererek, oluşacak hasarlara karşıcurcuminin koruyucu etkisinin olup olmadığını ve hücreçekirdeklerinde meydana gelen DNA hasarını tamir eden Poli(ADP-riboz)polimeraz-1 enziminin immünohistokimyasalboyama yöntemiyle gösterilmesi amaçlandı.Materyal-Method: Çalışmamız için seçilen dişi sıçanlar,biri kontrol olmak üzere toplam 4 gruba ayrıldı. Radyasyonhasarı oluşturmak amacıyla kontrol ve curcumin grubudışındaki deneklere tek doz tüm vücut 8.3 Gy iyonizeradyasyon uygulandı. Curcumin ve radyasyon+curcumingrubu deneklere; ışınlamadan 7 gün önce başlayarak günde100 mg/kg curcumin oral yoldan verildi. Işınlamadan sonraki4. günde deneklerden anestezi altında ovaryum dokularıalınarak mikroskobik incelemeler için işlemlendirildi.Bulgular: Radyasyon uygulamasından 4 gün sonra alınanovaryum dokularının kesitlerini incelediğimizde, ışınlanmışgruplardaki atretik özellik gösteren folliküller sayıcafazlaydı. Radyasyon ile ışınlanan curcumin tedavili grupta iseatretik follikül oranı radyasyon grubuna göre daha düşüktü.Curcumin ile tedavi edilen grupta, curcuminin radyasyonabağlı meydana gelen hasarları kısmen engellediği tespit edildi.Sonuç: Bu sonuçlar curcuminin ovaryum hasarında koruyucuetksi olduğunu göstermiştir.

Protective Effect of Curcumin on Folliculogenesis, and PARP-1 (Poly ADP-ribose polymerase) Expression Exposed İonising Raditation in Rat Ovary

Objective: : The aim of our study was to show the effects of ionising radiation on ovarium follicular atresia so that the protective effect of curcumin on the resulting damage could be determined, and in addition to immunohistochemically determining to level of expression of PARP-1 enzyme is responsible for DNA repair in the nucleus of the cells protected from radiation or irradiated the cells. Material-Method: The female rats chosen for the study were divided into 4 groups, one being the control group. The whole body of the rats in the other groups with the exception of those in the control group and the curcumin group was exposed to a single dosage of ionising radiation (8.3 Gy) with a view to causing radiation-induced damage. The animals in the curcumin and in the irradiated with treated curcumin had been fed a daily 100 mg/kg of curcumin through the intragastric tract for seven days in a row before the radiation process was launched. Ovarium tissues sample of these animals were collected for the purpose of microscopic examinations. Results: The ovarium tissues cultivated at the 4 day of the application of ionising radiation showed that there were the number of follicles showing atresic features was significantly high in the irradiated group. On the other hand, in the irradiated with treated curcumin group showed that the number of atretic follicles was lower than that in the irradiated group. The irradiated group given curcumin were observed to prevent the follicular damage caused by radiation. Conclusions: These results suggest that curcumin is protective effect in ovarian damage.

___

  • 1. Baker T.G. A Quantitative and Cytological Study of Germ Cells in Human Ovaries. Proc R Soc Lond B Biol Sci 1963; 158: 417-433.
  • 2. Faddy M.J, Gosden R.G, Gougeon A, Richardson S.J. and Nelson J.F. Accelerated disappearance of ovarian follicles in mid-life: implications for forecasting menopause. Hum Reprod 1992; (7)10:1342-1346.
  • 3. Townson D.H. and Combelles C.M.H. Ovarian Follicular Atresia. In Tech 2012; 43-76.
  • 4. Lee C.J, Park H.H, Do B.R, Yoon Y.D, Kim J.K. Natural and radiation – induced degeneration of primordial and primary follicles in Mouse ovary. Ani. Repro. Sci 2000; 59: 109-117.
  • 5. Kim J.K, Lee C.J, Song K.W. γ-Radiation accelerates ovarian follicular atresia in immature mice. In Vivo 1999; 13(1): 21-24.
  • 6. Byrne, J. Long-term genetic and reproductive effects of ionizing radiation and chemotherapeutic agents on cancer patients and their offspring. Teratology 1999; 59:210-215.
  • 7. Meirow, D, and Nugent. D. The effects of radiotherapy and chemotherapy on female reproduction. Human Reproduction Update 2001; 7(6): 535-543.
  • 8. Chemaitilly, W, Mertens, A.C, Mitby, P, Whitton, J, Stovall, M, Yasui, Y, Robison, L.L, Sklar, C.A. Acute ovarian failure in the childhood cancer survivor study. J. Clin Endocrinol Metab 2006; 91:1723-1728.
  • 9. Howell, S, Shalet, S. Gonodal damage from chemotherapy and radiotherapy. Endocrinol Metab Clin North Am 1998; 27:927-943.
  • 10. Nicosia, S.V, Matus-Riley, V, Meadows, A.T. Gonodal effects of cancer therapy in girls. Cancer 1985; 55:2364-2372.
  • 11. Choudhary, D. Modulation of radioresponse of glyoxalase system by curcumin. Journal of Ethnopharmacology 1999; 46:1-7.
  • 12. Jeggo, P.A. DNA repair: PARP-another guardian genome? Curr Biol 1998; 8:49-51.
  • 13. Burkle, A. Poly (ADP ribose): The most elaborate metabolite of NAD+. FEBS Journal 2005; 272:4576–4589.
  • 14. Quesada, R.C, Gamez, J.A.M, Oliva, D.M, Peralta, A, Valenzuela M.T, Romero, R.M, Perez R.Q, De Murcia, J.M, De Murcia, G, De Almodovar, M.R, and Oliver F.J. Interaction between ATM and PARP-1 in response to DNA damage and sensitization of ATM deficient cells through PARP inhibition. BMC Molecular Biology 2007; 29:1-8.
  • 15. Schreiber, V, Dantzer, F, Amé, J. C, and de Murcia, G Poly(ADP-ribose): novel functions for an old molecule. Nat. Rev. Mol. Cell Biol 2006; 7, 517-528.
  • 16. Bouchard, V.J, Rouleau, M, and Poirier, G. G. PARP-1, a determinant of cell survival in response to DNA damage. Exp. Hematol 2003; 31, 446-454.
  • 17. Ammon, H.P, Wahl, M.A. Pharmacology of Curcuma longa. Planta Medica 1991; 57(1): 1–7.
  • 18. Eigner, D, Scholz, D. Ferula asafoetida and Curcuma longa in traditional medical treatment and diet in Nepal. Journal of Ethnopharmacology 1999; 67(1): 1–6.
  • 19. Akpolat, M, Topçu Tarladaçalışır, Y, Uz, Y.H, Sapmaz, M.M, Kızılay, G. Kanser Tedavisinde Curcuminin Yeri. Yeni Tıp Dergisi 2010; 27:142-147.
  • 20. Tilly, J.L. Ovarian follicle counts not as simple as 1, 2, 3. Reprod Biol Endocrinol 2003; 1:11.
  • 21. Srinivasan, M, Ram, Sudheer, Raveendran, P.K, Raghu, K.P, Sudhakaran, P.R, Menon, V.P. Modulatory effects of curcumin on γ- radiation-induced cellular damage in primary culture of isolated rat hepatocytes. Environmental Toxicology and Pharmacology 2007; 24:98-105.
  • 22. Jagetia, G.C, Rajanikant, G.K. Role of curcumin, a Naturally occuring phenolic compound of Turmeric in Accelerating the repair of excision wound, in mice wholebody exposed to various doses of γ- radiation. Journal of Surgical Research 2004; 120:127-138.
  • 23. Thibaud, E, Rodriquez, M.K, Trivin, C. Ovarian function after bone marrow transplantation during childhood. Bone Marrow Transplant 1998; 22:989-994.
  • 24. Devine, P.J, Payne, C.M, McCuskey, M.K, Hoyer, P.B. Ultrastructural evaluation of oocytes during atresia in rat ovarian follicles. Biol Reprod. 2000; 65(5):1245- 52.
  • 25. Kim, J.K, Lee, C.J. Effect of exogenous melatonin on the ovarian follicles in γ- irradiated mouse. Mutat Res 2000; 449:33-39.
  • 26. Aktas, C, Kanter, M, Kocak, Z. Antiapoptotic and proliferative activity of curcumin on ovarian follicles in mice exposed to whole body ionizing radiation. Toxicology and Industrial Health 2011; 1- 12.
  • 27. Mole, R.H., Papworth, D.G. The sensitiviy of rat oocytes to X-rays. Int Radiat Biol 1966; 6:609-15.
  • 28. Metindir, J, Bozkurt, C. Kanser tedavilerinin over fonksiyonlarına etkisi ve fertilitede koruyucu yaklaşımlar. J Turkish German Gynecol Assoc 2005; 6(1):23-29.
  • 29. Uzal, C, Çaloğlu, M. Kanser etyolojisinde iyonizan radyasyonun yeri. Trakya Üniv Tıp Fak Derg 2002; 19:177- 182.
  • 30. Kelle, İ. Radyoprotektif Etkili Ajanlar. Dicle Tıp Dergisi 2008; 35(1):69-76.
  • 31. Antunes, L.M.G, Araujo, M.C.P, Dia, P.B.L, Takahashi, C. Effect of H2O2, Fe+2 and Fe+3 on curcumin-induced chrosomal aberrations in CHO cells. Genet. Mol. Biol 2005; 28:161-164.
  • 32. Khopde, S.M, Priyadarsini, K.I, Guha, S.N, Satav, J.G, Venkatesan, P, Rao, M.N.A. Inhibition of radiationinduced lipid peroxidation by tetrahydrocurcumin: Possible mechanisms by pulse radiolysis. Biosci Biotechnol Biochem 2000; 64(3):503-509.
  • 33. Huang, M.T, Lou, Y.R., Me, W., Newmark, H.L, Reuhl, K.R, Conney, H. Inhibitory effects of dietary curcumin on forestomach, dueodonal an colon carcinogenesis in mice. Cancer Res 1994; 54:5841-7.
  • 34. Thresiamma, K.C, George, J, Kuttan, R. Protective effect of curcumin ellagic acid and bixin on radiation induced toxicitiy. J Exp Biol 1996; 34:845-7.
  • 35. Kanter, M, Aktaş, C, and Erboğa, M. Curcumin attenuates testicular damage, apoptotic germ cell death, and oxidative stres in streptozotocin-induced diabetic rats. Mol Nutr Food Res 2012; 56:1-8.
  • 36. Reddy, P, Lokesh, B.R. Studies on the inhibitory effects of curcumin and eugenol on the formation of reactive oxygen species and the oxidation of ferrous iron. Mol Cell Bichem 1994; 137:1-8.
  • 37. Qian, H., Xu, J., Lalioti, M.D., Gulle, K., Sakkas, D. Oocyte numbers in the mouse increase after treatment with 5-Aminoisoquinolinone: A potent inhibitor of poly(ADPribosyl) ation. Biology of Reproduction 2010; 82:1000-1007.
  • 38. Tekcan, M, Koksal, T.K., Tasatargil, A., Kutlu, O., Gungor, E., Celik-Ozenci, C. Potential role of poly(ADP-ribose) polymerase activation in the pathogenesis of experimental left varicocele. Journal of Andrology. 2012; 33:122-132.
  • 39. Ossovskaya, V, Chou, K.I, Kaldjian, E.P, Alvares, C, Sherman, B.M. Upregulation of Poly (ADP-Ribose) Polymerase-1 (PARP1) in Triple-Negative Breast Cancer and Other Primary Human Tumor Types. Genes & Cancer 2010; 1:812-821.
  • 40. Bakondi, E. Alterations in PARP metabolism and calcium homeostasis in oxidatively stressed HaCaT and Mouse macrophage cell lines. University of Debrecen 2003.
  • 41. Tezcan, G. PARP-1 ve XRCC1 polimorfizmlerinin astım’da DNA onarım mekanizması ile olan ilişkisinin araştırılması. İstanbul Üniversitesi İstanbul 2008.
  • 42. Di Meglio, S., Denegri, M., Vallefuoco, S., Tramontano, F., Scovassi, AI., Quesada, P. Poly(ADPR) polymerase-1 and poly(ADPR) glycohydrolase level and distribution in differentiating rat germinal cells. Molecular and Cellular Biochemistry 2003; 248:85-91.
  • 43. Atorino, L., Di Meglio, S., Farina, B., Jones, R., Quesada, P. Parp requirement of rat germinal cells in the recovery from DNA damage induced by gamma irradiation and H2O2 treatment. Eur J Cell Biol 2001; 80:222-229.
  • 44. De Murcia, J.M., Neidergang, C., Trucco, C., Ricoul, M., Dutrillaux, B., Mark, M., Oliver, F.J., Masson, M., Dierich, A., Lemeur, M., Waltzinger, C., Chambon, P.P., De Murcia, G. Requirement of poly(ADP-ribose) polymerase in recovery from DNA damage in mice and in cells. Proc Natl Acad Sci 1997; 94:7303-7307.