Frükto-oligosakkarit Bileşenleri ile Lactobacillus acidophilus'un Etkileşiminin Değerlendirilmesi ve Karşılaştırılması

Özet: Bu çalışmada glikoz, früktoz, sükroz, 1-kestoz, Orafti P95, früktoz+1-kestoz, früktoz+nistoz, sükroz+1-kestoz, sükroz+nistoz, glikoz+1-kestoz, glikoz+nistoz ve glikoz+früktoz+1-kestoz içeren farklı de Man, Rogosa ve Sharpe sıvı besiyeri (MRS Broth) ortamlarında Lactobacillus acidophilus bakterisinin büyümesi incelenmiştir. Çalışma sonuçları, Lactobacillus acidophilus bakterisinin frükto-oligosakkarit karışımlarını metabolizleyebildiği ve bunlar arasında 1-kestozu tercih ettiğini göstermektedir. Çalışmada nistozun glikoz, früktoz veya sükrozla kombine edildiği ortamlarda bakteri büyümesinde olumlu bir etki gözlenmemiştir. Dolayısıyla bakterinin nistozu metabolizleyemediği sonucuna varılmıştır. En iyi üçlü kombinasyon olarak öngörülen glikoz+früktoz+sükroz içeren MRS Broth ortamında, ikili kombinasyonlara göre bakteri büyümesinde inhibisyon elde edilmiştir. Sonuç olarak, frükto-oligosakkarit karışımlarından en iyi metabolizlenebilen bileşenin 1-kestoz olduğu, en az hidrolizlenebilen bileşenin ise nistoz olduğu belirlenmiştir. Frükto-oligosakkarit metabolizlenmesi sonucunda üretilen organik asit tür ve miktarları ise ODTÜ Merkez Laboratuarı'nda YPSK ile analizlenmiş ve 6,1 mg/ml laktik asit, 3,3 mg/ml propiyonik asit ve 3,1 mg/ml bütirik asit olarak belirlenmiştir.

Determination and Comparison of Interaction Between Fructo-oligosaccharide Components and Lactobacillus acidophilus

Abstract: In this research, the growth of Lactobacillus acidophilus bacteria in different medium of MRS Broth containing glucose, fructose, sucrose, 1-kestose, Orafti P95, fructose+1-kestose, fructose+nystose, sucrose+1-kestose, sucrose+nystose, glucose+1-kestose, glucose+nystose, or glucose+fructose+1-kestose was investigated. The results showed that Lactobacillus acidophilus bacteria can metabolize fructooligosaccharide mixtures, and preferentially uses 1-kestose. When nystose was combined with glucose, fructose or sucrose, no positive effect was observed on the growth. Thus, it was concluded that the bacteria cannot metabolize nystose. The predicted best triple combination of MRS-Broth containing glucose+fructose+1-kestose was inhibited the growth in comparison of double combinations. 1-kestose was found the best usable fructooligosaccharide compound whereas nystose was the least. Organic acid types and amounts that were produced after the consumption of fructo-oligosaccharides was analyzed by HPLC in Central Laboratory of METU, and it was found that 6.1 mg/mL lactic acid, 3.3 mg/mL propionic acid and 3.1 mg/ml butyric acid were produced by the bacteria.

___

  • Delzenne N.M., Roberfroid M.R., 1994. Physiological effects of nondigestible oligosaccharides, Lebensmittel-Wissenschaft und-Technologie, 27: 1–6.
  • Yıldız S., 2011. The metabolism of fructooligosaccharides and fructooligosaccharide-related compounds in plants, Food Reviews International, 27: 16-50.
  • Lewis D.H., 1993. Nomenclature and diagrammic representation of oligomeric fructans- a paper for discussion, New Phytologist, 124:583-594.
  • Crittenden R.G., Playne M.J., 1996. Production, properties and applications of food-grade oligosaccharides, Trends in Food Science and Technology, 7:353–361.
  • Franck A., 2002. Technological functionality of inulin and oligofructose, British Journal of Nutrition, 87:287-289. Godshall http://www.spriinc.org/buton10bftpp.html. (Dec 2007). Future directions for the sugar industry.
  • Brannon C., 2003. Prebiotics: feeding friendly bacteria. Today’s Dietitian Magazine, www.todaysdietitian.com/todayscpe_articles.html. (Jan 2010).
  • Nzeusseu A., Dienst D., Houfroid V., Depressux G., Jean-Pierre Devagelaer, Daniel Henry Manicourt., 2006. Inulin and FOS differ in their ability to enhance the density of cancellous and cortical bone in the axial and peripheral skeleton of growing rats, Bone, 38: 394-399.
  • Molis C.H., Flourie B., Quarne F., Gailling M.F., Lartigue S., 1996. Digestion, excretion and energy value of FOSs in healthy humans, The American Journal of Clinical Nutrition, 64: 324-328.
  • Tungland B.C., Meyer D., 2002. Non-digestible oligo- and polysaccharides (dietary fiber): their physiology and role in human health and food, Comprehensive Reviews in Food Science and Food Safety, 3: 90-109.
  • Roberfroid M.B., 2000. Prebiotics and probiotics: are they functional foods? The American Journal of Clinical Nutrition, 71: 1682-1687.
  • Roberfroid M.B., Delzenne N.M., 1998. Dietary fructans. Annual Reviews of Nutrition, 18: 117-143.
  • Itsaranuwat P., Khawla S.H., Al- Haddad, Robinson R.K., 2003. The potential therapeutic benefits of consuming ‘health-promoting’ fermented dairy products: a brief update. Society of Dairy Technology. 56: 203-210.
  • Roberfroid M.B., Slavin J., 2000. Nondigestible oligosaccharides, Critical Reviews in Food Science and Nutrition, 40:461-80.
  • Çakır İ., Çakmakçı M.L., 2004. Probiyotikler: tanımı, etki mekanizması, seçim ve güvenirlik kriterleri, Gıda, 29: 427.
  • Liong M.T., Shah N.P., 2005. Production of organic acids from fermentation of mannitol, fructooligosaccharide and inulin by a cholesterol removing Lactobacillus acidophilus strain, Journal of Applied Microbiology, 99: 783–793.
  • Zalan Z., Hudacek J., Stetina J., Chumchalov J., Hala A., 2009. Production of organic acids by Lactobacillus strains in three different media, European Food Research and Technology, 230: 395–404.
  • Asuman Şahin Büyüktortop e-posta: asu395@hotmail.com