Uzay-Zamanlardaki Konsörkılır Eğrilik Tensörü Üzerine

Bu çalışmanın amacı, uzay-zaman olarak adlandırılan 4-boyutlu Lorentz metrik işaretli manifoldlar üzerinde konsörkılır eğrilik tensörünün bazı özelliklerinin incelenmesidir. İlk iki bölümde çalışma tanıtılmış ve birbiriyle ilişkili kavramlar ile bazı notasyonlar sunulmuştur. Çalışmanın üçüncü bölümünde, bu metrik işarette (bivektörler olarak da bilinen) 2-formların sınıflandırma şeması göz önüne alınarak, bu manifoldlar üzerindeki konsörkılır eğrilik tensörünün özbivektör yapısı ile ilgili bazı sonuçlar elde edilmiştir. Daha sonra, uzay-zamanlar üzerinde bilinen dolanım cebirleri dikkate alınmış, konsörkılır ve Riemann eğrilik tensörlerine ilişkin bazı teoremler verilmiştir. Söz konusu analiz, bu manifoldlar üzerindeki Riemann eğrilik tensörünün tipleri ile de ilişkilidir. Son bölümde ise, çalışmada elde edilen sonuçlar özetlenmiş ve tartışma bölümü sunulmuştur.

On Concircular Curvature Tensor in Space-Times

The aim of this work is to examine some properties of the concircular curvature tensor on $4-$dimensional manifolds admitting a Lorentz metric (so called space-times). In the first two sections, the study is introduced and the interrelated concepts together with some notations are presented. In the third section of the study, some results are obtained connected to eigenbivector structure of the concircular curvature tensor on these manifolds by taking into account the classification scheme of 2--forms (also known as bivectors) in this metric signature. Then, the known holonomy algebras on space-times are considered and some theorems are given regarding the concircular and Riemann curvature tensors. This analysis is also associated with the types of the Riemann curvature tensor on these manifolds. In the last section, the results of the study is summarized and the discussion part is presented.

___

  • [1] Mikeš, J., Stepanova, E., Vanžurová, A., et al. 2015. Differential Geometry of Special Mappings. Palacký University, Olomouc.
  • [2] Hall, G. S. 2004. Symmetries and Curvature Structure in General Relativity. World Scientific.
  • [3] Yano, K. 1940. Concircular Geometry I. Concircular Transformations. Proceedings of the Imperial Academy, 16, 6, 195-200.
  • [4] Yano, K. 1940. Concircular Geometry II. Integrability Conditions of $\rho_{\mu\nu}=\phi g_{\mu\nu}$. Proceedings of the Imperial Academy, 16, 8, 354-360.
  • [5] Blair, D. E., Kim, J-S., Tripathi, M. M. 2005. On the Concircular Curvature Tensor of a Contact Metric Manifold. Journal of the Korean Mathematical Society, 42, 5, 883-892.
  • [6] Kühnel, W. 1988. Conformal Transformations Between Einstein Spaces. Conformal Geometry. Aspects of Mathematics / Aspekte der Mathematik, vol 12. Vieweg+Teubner Verlag, Wiesbaden, 105-146.
  • [7] Hong, S., Özgür, C., Tripathi, M. M. 2006. On Some Special Classes of Kenmotsu Manifolds. Kuwait Journal of Science and Engineering, 33, 2, 19-32.
  • [8] Hirica, I. E. 2016. Properties of Concircular Curvature Tensors on Riemann Spaces. Filomat, 30, 11, 2901-2907.
  • [9] Ahsan, Z., Siddiqui, S. A. 2009. Concircular Curvature Tensor and Fluid Spacetimes. International Journal of Theoretical Physics, 48, 11, 3202-3212.
  • [10] Olszak, K., Olszak, Z. 2012. On Pseudo-Riemannian Manifolds with Recurrent Concircular Curvature Tensor. Acta Mathematica Hungarica, 137, 1-2, 64-71.
  • [11] Sachs, R. K. 1961. Gravitational Waves in General Relativity. VI. The Outgoing Radiation Condition. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences, 264, 309-338.
  • [12] Kobayashi S., Nomizu K. 1963. Foundations of Differential Geometry, Interscience, vol 1., New York.
  • [13] Schell, J. F. 1961. Classification of Four-Dimensional Riemannian Spaces. Journal of Mathematical Physics, 2, 202-206.
  • [14] Hall, G. S., Lonie, D. P. 2004. Holonomy and Projective Symmetry in Spacetimes. Classical and Quantum Gravity, 21, 19, 4549-4556.
  • [15] Hall, G. S., Lonie, D. P. 2000. Holonomy Groups and Spacetimes. Classical and Quantum Gravity, 17, 6, 1369-1382.
  • [16] Wang, Z., Hall, G.S. 2013. Projective Structure in 4-dimensional Manifolds with Metric of Signature (+;+;-;-). Journal of Geometry and Physics, 66, 37-49.
Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi-Cover
  • ISSN: 1300-7688
  • Yayın Aralığı: Yılda 3 Sayı
  • Başlangıç: 1995
  • Yayıncı: Süleyman Demirel Üniversitesi
Sayıdaki Diğer Makaleler

Matris Formda Kompleks Değerli Kısmi Diferensiyel Denklemlerin Çözümleri Yardımıyla Kompleks Matris Değerli Fonksiyonlara Yaklaşım Üzerine

YEŞİM SAĞLAM ÖZKAN, SEZAYİ HIZLIYEL

Exponentiated Reduced Kies Dağılımının Parametreleri için Tahmin Yöntemlerinin Karşılaştırılması

FATMA GÜL AKGÜL

Tetrahidrofuran ve Dimetil Sülfoksitin Vanadyum Redoks Bataryadaki Pozitif Elektrolit Üzerine Olan Etkilerinin Araştırılması

Metin GENÇTEN

İnsan İnsülin Hormonu Öncülerinin Pichia pastoris AOX1 Promotoru Altında Klonlanması, Ekspresyonu ve Biyoreaktörde Üretimi

Aysun TÜRKANOĞLU ÖZÇELİK, Ayşe TORUN, Semiramis YILMAZ, MEHMET İNAN

Yerfıstığı (Arachis hypogaea L.) Genotiplerinin Bazı Besinsel ve Antioksidan Parametreler Bakımından Değerlendirilmesi

Tuğçe KALEFETOĞLU MACAR, Oksal MACAR, Ayse Nuran CIL, Celile Aylin OLUK, Abdullah ÇİL

Bir Konteyner Limanında Etkin Saha Planlaması için Simülasyon Tabanlı Bir Yaklaşım

MURAT ÇOLAK, GÜLŞEN AYDIN KESKİN, HATİCE ESEN, Canan BEKTAŞ

İnşaat Proje Süresi Tahmininde Referans Sınıf Tahmin Yöntemi

SAVAŞ BAYRAM, Saad AL JIBOURI

İnsan-İnsan Etkileşimini Arttırmaya Yönelik Çok Oyunculu Mobil ve Sosyal Oyun Tasarımı

Yusuf Hüseyin ŞAHİN, Hüseyin ERDOĞAN, HAZIM KEMAL EKENEL

Sera Kavun Yetiştiriciliğinde Aşılı Fide Kullanımının Verim ve Kaliteye Etkileri

Aynur KARABULUT, HAKAN AKTAŞ, BEKİR ŞAN

Savonius Rüzgâr Türbini (İkili ve Üçlü) Kanat Çevresi Akışının Sayısal Analizi

FARUK KILIÇ, Mustafa GÖKTAŞ