Yerfıstığı (Arachis hypogaea L.) Genotiplerinin Bazı Besinsel ve Antioksidan Parametreler Bakımından Değerlendirilmesi

Bu çalışmanın amacı Türkiye’de yetiştirilen altı farklı yerfıstığı genotipinin bazı besinsel ve antioksidan parametrelerini araştırmaktır. Analizler için kabuksuz tohum özütleri kullanılmıştır. Tohumların iç kabukları soyulmamıştır. Ham protein ve ham yağ miktarları, yağ asidi kompozisyonları, toplam fenolik ve flavonoid içerikleri ile toplam antioksidan kapasiteleri araştırılmıştır. Tohumların ham yağ içerikleri %43.9’dan %45.9’a kadar sıralanmıştır. Öte yandan, ham protein içerikleri %26.9 ile 30.6 arasında değişim göstermiştir. En yüksek protein yüzdesi NC-7 tohumlarında belirlenmiştir. Genotiplerin ham yağ içerikleri istatistiksel olarak farklı değildi. Oleik asit tüm genotiplerde en çok bulunan yağ asidi olmuş ve bunu sırasıyla linoleik asit, palmitik asit, stearik asit ve linolenik asit takip etmiştir. En yüksek oleik asit/linoleik asit oranı NC-7 ve DA35/2011’de gözlenmiştir. Toplam fenolik ve toplam flavonoid analizlerinden elde edilen veriler her bir genotip için benzerdir. NC-7 ve DA35-2011 toplam fenolik ve toplam flavonoid içerikleri açısından en fakir genotiplerdir. ABTS.+ radikal süpürme aktivitesine göre, en güçlü genotipler Gazipaşa ve Sultan’dır. Çalışmamız, daha fazla fenolik içeriğin her bir genotip için daha fazla antioksidan kapasiteye yol açtığını göstermiştir.

Assessment of Peanut (Arachis hypogaea L.) Genotypes in Terms of Some Nutritional and Antioxidant Parameters

The objective of this study was to investigate some nutritional and antioxidant parameters of six different peanut genotypes grown in Turkey. Unshelled seed extracts were used for analyses. The skins of the seeds were not peeled. The crude protein and the crude oil amounts, fatty acid compositions, the total phenolic and flavonoid contents and the total antioxidant capacities were investigated. The crude oil contents of seeds ranged from 43.9 to 45.9%. On the other hand, the crude protein contents varied between 26.9 and 30.6%. The highest protein percentage was determined in NC-7 seeds. The crude oil contents of the genotypes were not different statistically. Oleic acid was the most plentiful fatty acid in all genotypes and followed by linoleic acid, palmitic, stearic and linolenic acids, respectively. The highest oleic acid/linoleic acid ratio was found in NC-7 and DA35/2011. Data obtained from the total phenolic and the total flavonoid analyses had similar manners for each genotype. NC-7 and DA35-2011 were the poorest genotypes in the total phenolic and flavonoid levels. With regards to the ABTS.+ radical scavenging activity, the most powerful genotypes were Gazipaşa and Sultan. Our study showed that the more phenolic content gave rise to the more antioxidant capacity for each genotype.

___

  • [1] Menpadi, H., Patil, R. P. 2017. Influence of Stress Mitigating Compounds on Biophysical Parameters & Yield and Yield Attributes under Drought Conditions in Groundnut (Arachis hypogea L.). International Journal of Pure & Applied Bioscience, 5(4), 1289-1294.
  • [2] Caliskan, S., Caliskan, M. E., Arslan, M., Arioglu, H. 2008. Effects of Sowing Date and Growth Duration on Growth and Yield of Groundnut in a Mediterranean-Type Environment in Turkey. Field Crops Research, 105(1), 131-140.
  • [3] Kaya, C., Hamamci, C., Baysal, A., Akba, O., Erdogan, S., Saydut, A. 2009. Methyl Ester of Peanut (Arachis hypogea L.) Seed Oil as a Potential Feedstock for Biodiesel Production. Renewable Energy, 34(5), 1257-1260.
  • [4] Gulluoglu, L., Bakal, H., Onat, B., Kurt, C., Arioglu, H. 2016. The Effect of Harvesting Date on Some Agronomic and Quality Characteristics of Peanut Grown in the Mediterranean Region of Turkey. Turkish Journal of Field Crops, 21(2), 224-232.
  • [5] Özcan, M., Seven, S. 2003. Physical and Chemical Analysis and Fatty Acid Composition of Peanut, Peanut Oil and Peanut Butter from ÇOM and NC-7 Cultıvars. Grasas y Aceites, 54(1), 12-18.
  • [6] Maguire, L. S., O'sullivan, S. M., Galvin, K., O'connor, T. P., O'brien, N. M. 2004. Fatty Acid Profile, Tocopherol, Squalene and Phytosterol Content of Walnuts, Almonds, Peanuts, Hazelnuts and the Macadamia Nut. International Journal of Food Sciences and Nutrition, 55(3), 171-178.
  • [7] Luo, Y., Wang, H., Xu, X., Mei, W., Dai, H. 2010. Antioxidant Phenolic Compounds of Dracaena cambodiana. Molecules, 15(12), 8904-8914.
  • [8] Thaipong, K., Boonprakob, U., Crosby, K., Cisneros-Zevallos, L., Byrne, D. H. 2006. Comparison of ABTS, DPPH, FRAP, and ORAC Assays for Estimating Antioxidant Activity from Guava Fruit Extracts. Journal of Food Composition and Analysis, 19(6), 669-675.
  • [9] Arnao, M. B., Cano, A., Acosta, M. 2001. The Hydrophilic and Lipophilic Contribution to Total Antioxidant Activity. Food Chemistry, 73(2), 239-244.
  • [10] Gaafar, A. A., Mahmoud, K. M., Salama, Z. A. 2015. Antioxidant Potential Activity and Cytotoxicity Effects of Different Parts of Peanuts (Arachis hypogaea L.). International Journal of Pharma and Bio Sciences, 6(3), 19-32.
  • [11] Balasundram, N., Sundram, K., Samman, S. 2006. Phenolic Compounds in Plants and Agri-industrial By-products: Antioxidant Activity, Occurrence, and Potential Uses. Food Chemistry, 99(1), 191-203.
  • [12] Kandaswami, C., Middleton, E. 1997. Flavonoids as Antioxidants. pp 174-203. Shahidi, F., ed. 1997. Natural Antioxidants: Chemistry, Health Effects, and Applications, AOCS Press, Illionis, 432p.
  • [13] Wang, M. L., Chen, C. Y., Tonnis, B., Barkley, N. A., Pinnow, D. L., Pittman, R. N., Davis, J., Holbrook, C. C., Stalker, H. T., Pederson, G. A. 2013. Oil, Fatty Acid, Flavonoid, and Resveratrol Content Variability and FAD2A Functional SNP Genotypes in the US Peanut Mini-core Collection. Journal of Agricultural and Food Chemistry, 61(11), 2875-2882.
  • [14] Bodoira, R., Rossi, Y., Montenegro, M., Maestri, D., Velez, A. 2017. Extraction of Antioxidant Polyphenolic Compounds from Peanut Skin Using Water-ethanol at High Pressure and Temperature Conditions. The Journal of Supercritical Fluids, 128, 57-65.
  • [15] de Camargo, A. C., Regitano-d'Arce, M. A. B., Rasera, G. B., Canniatti-Brazaca, S. G., do Prado Silva, L., Alvarenga, V. O., Sant'Ana, A. S., Shahidi, F. 2017. Phenolic Acids and Flavonoids of Peanut By-products: Antioxidant Capacity and Antimicrobial Effects. Food Chemistry, 237, 538-544.
  • [16] Yen, G. C., Duh, P. D., Tsai, C. L. 1993. Relationship between Antioxidant Activity and Maturity of Peanut Hulls. Journal of Agricultural and Food Chemistry, 41(1), 67-70.
  • [17] James, C. S. 1995. Analytical Chemistry of Foods. Blackie Academic and Professional, London, 173p.
  • [18] Anonim, 2014. TGK Zeytinyağı ve Prina Yağı Numune Alma ve Analiz Metotları Tebliği No:2014/53. Resmi Gazete Tarihi: 20.11.2014.
  • [19] AOAC, 1990. Official Methods of Analysis of the AOAC, 15th edition. Methods 990.03. Association of Official Anaytical Chemists. Arlington, VA, USA.
  • [20] Marinova, D., Ribarova, F., Atanassova, M. 2005. Total Phenolics and Total Flavonoids in Bulgarian Fruits and Vegetables. Journal of Chemical Technology and Metallurgy, 40(3), 255-260.
  • [21] Padhi, E. M., Liu, R., Hernandez,. M, Tsao, R., Ramdath, D. D. 2016. Total Polyphenol Content, Carotenoid, Tocopherol and Fatty Acid Composition of Commonly Consumed Canadian Pulses and Their Contribution to Antioxidant Activity. Journal of Functional Foods, 38, 602-611.
  • [22] de Paula, A. F., Dinato, N. B., Vigna, B. B. Z., Fávero, A. P. 2017. Recombinants from the Crosses between Amphidiploid and Cultivated Peanut (Arachis hypogaea) for Pest-resistance Breeding Programs. Public Library of Science One, 12(4), e0175940.
  • [23] Ayoola, P. B., Adeyeye, A., Onawumi, O. O. 2012. Chemical Evaluation of Food Value of Groundnut (Arachis hypogaea) Seeds. American Journal of Food and Nutrition, 2(3), 55-57.
  • [24] Aung, W., Bjertness, E., Htet, A., Stigum, H., Chongsuvivatwong, V., Soe, P., Kjøllesdal, M. 2018. Fatty Acid Profiles of Various Vegetable Oils and the Association Between the Use of Palm Oil vs. Peanut Oil and Risk Factors for Non-Communicable Diseases in Yangon Region, Myanmar. Nutrients, 10(9), 1193.
  • [25] Andersen, P. C., Gorbet, D. W. 2002. Influence of Year and Planting Date on Fatty Acid Chemistry of High Oleic Acid and Normal Peanut Genotypes. Journal of Agricultural and Food Chemistry, 50(5), 1298-1305.
  • [26] Tillman, B. L., Gorbet, D. W., Person, G. 2006. Predicting Oleic and Linoleic Acid Content of Single Peanut Seeds Using Near-infrared Reflectance Spectroscopy. Crop Science, 46(5), 2121-2126.
  • [27] Akhtar, S., Khalid, N., Ahmed, I., Shahzad, A., Suleria, H. A. R. 2014. Physicochemical Characteristics, Functional Properties, and Nutritional Benefits of Peanut Oil: a Review. Critical Reviews in Food Science and Nutrition, 54(12), 1562-1575.
  • [28] Norden, A. J., Gorbet, D. W., Knauft, D. A., Young, C. T. 1987. Variability in Oil Quality among Peanut Genotypes in the Florida Breeding Program. Peanut Science, 14(1), 7-11.
  • [29] Dwivedi, S. L., Nigam, S. N., Jambunathan, R., Sahrawat, K. L., Nagabhushanam, G. V. S., Raghunath, K. 1993. Effect of Genotypes and Environments on Oil Content and Oil Quality Parameters and Their Correlation in Peanut (Arachis hypogaea L.). Peanut Science, 20(2), 84-89.
  • [30] Worthington, R. E., Hammons, R. O. 1971. Genotypic Variation in Fatty Acid Composition and Stability of Arachis hypogaea L. Oil. Oleagineux, 26, 695-700.
  • [31] Arya, S. S., Salve, A. R., Chauhan, S. 2016. Peanuts as Functional Food: a Review. Journal of Food Science and Technology, 53(1), 31-41.
  • [32] Toomer, O. T. 2017. Nutritional Chemistry of the Peanut (Arachis hypogaea). Critical Reviews in Food Science and Nutrition, 29, 1-12.
  • [33] Settaluri, V. S., Kandala, C. V. K., Puppala, N., Sundaram, J. 2012. Peanuts and Their Nutritional Aspects - a Review. Food and Nutrition Sciences, 3(12), 1644-1650.
  • [34] Limmongkon, A., Nopprang, P., Chaikeandee, P., Somboon, T., Wongshaya, P., Pilaisangsuree, V. 2018. LC-MS/MS Profiles and Interrelationships Between the Anti-inflammatory Activity, Total Phenolic Content and Antioxidant Potential of Kalasin 2 Cultivar Peanut Sprout Crude Extract. Food Chemistry, 239, 569-578.
  • [35] Talcott, S. T., Passeretti, S., Duncan, C. E., Gorbet, D. W. 2005. Polyphenolic Content and Sensory Properties of Normal and High Oleic Acid Peanuts. Food Chemistry, 90(3), 379-388.
  • [36] Akram, N. A., Shafiq, F., Ashraf, M. 2018. Peanut (Arachis hypogaea L.): A Prospective Legume Crop to Offer Multiple Health Benefits under Changing Climate. Comprehensive Reviews in Food Science and Food Safety, 17(5), 1325-1338.
  • [37] Pratt, D. E., Miller, E. E. 1984. A Flavonoid Antioxidant in Spanish Peanuts (Arachia hypogoea). Journal of the American Oil Chemists Society, 61(6), 1064-1067.
  • [38] Zhishen, J., Mengcheng, T., Jianming, W. 1999. The Determination of Flavonoid Contents in Mulberry and Their Scavenging Effects on Superoxide Radicals. Food Chemistry, 64(4), 555-559.
  • [39] Bishi, S. K., Lokesh, K., Mahatma, M. K., Khatediya, N., Chauhan, S. M., Misra, J. B. 2015. Quality Traits of Indian Peanut Cultivars and Their Utility as Nutritional and Functional Food. Food Chemistry, 167, 107-114.
  • [40] de Camargo, A. C., Regitano-d'Arce, M. A. B., Gallo, C. R., Shahidi, F. 2015. Gamma-irradiation Induced Changes in Microbiological Status, Phenolic Profile and Antioxidant Activity of Peanut Skin. Journal of Functional Foods, 12, 129-143.
Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi-Cover
  • ISSN: 1300-7688
  • Yayın Aralığı: Yılda 3 Sayı
  • Başlangıç: 1995
  • Yayıncı: Süleyman Demirel Üniversitesi
Sayıdaki Diğer Makaleler

Nitro Piridin Halkasının Nükleofilik Sübstitüsyonundan Elde Edilen İki Yeni Enerjik Malzemenin Termal İncelenmesi, Termokinetik Analizi ve Antimikrobiyal Aktivitesi

EMİNE KÜBRA İNAL, NURCAN ACAR, Şaziye Betül SOPACI, Ceren YILDIZ, HASAN NAZIR, Orhan ATAKOL, Sevi ÖZ

Tuş Vuruş Dinamikleri ile Klavye Kullanım Stiline Dayalı Kullanıcı Tanıma

İslam MAYDA, İBRAHİM DEMİR

Minkowski Uzay-Zamanda Timelike Eğriler Arasındaki Bäcklund Dönüşümü Üzerine

MELEK ERDOĞDU, MUSTAFA ÖZDEMİR

İnsan İnsülin Hormonu Öncülerinin Pichia pastoris AOX1 Promotoru Altında Klonlanması, Ekspresyonu ve Biyoreaktörde Üretimi

Aysun TÜRKANOĞLU ÖZÇELİK, Ayşe TORUN, Semiramis YILMAZ, MEHMET İNAN

Bina İç Mekân Sıcaklıklarının Kullanıcı Davranışına Göre Değişiminin Enerji Tüketimine Etkisi

KÜBRA SÜMER HAYDARASLAN, YALÇIN YAŞAR

Investigation the Effects of Tetrahydrofuran and Dimethyl Sulfoxide on the Positive Electrolyte of Vanadium Redox Flow Battery

METİN GENÇTEN

Savonius Rüzgâr Türbini (İkili ve Üçlü) Kanat Çevresi Akışının Sayısal Analizi

FARUK KILIÇ, Mustafa GÖKTAŞ

Sera Domatesi Yetiştiriciliğinde Farklı Yaprak Budama Tekniklerinin Verim ve Meyve Kalitesi Üzerine Etkisi

İbrahim ILDIR, HAKAN AKTAŞ

Yerfıstığı (Arachis hypogaea L.) Genotiplerinin Bazı Besinsel ve Antioksidan Parametreler Bakımından Değerlendirilmesi

Tuğçe KALEFETOĞLU MACAR, Oksal MACAR, Ayse Nuran CIL, Celile Aylin OLUK, Abdullah ÇİL

Exponentiated Reduced Kies Dağılımının Parametreleri için Tahmin Yöntemlerinin Karşılaştırılması

FATMA GÜL AKGÜL