Investigation the Effects of Tetrahydrofuran and Dimethyl Sulfoxide on the Positive Electrolyte of Vanadium Redox Flow Battery

In this work, a comparative study was done to determine the effects of tetrahydrofuran and dimethyl sulfoxide on the electrochemical behaviors of a vanadium redox flow battery’s (VRFB’s) positive electrolyte. In this concept, cyclic voltammetry and electrochemical impedance spectroscopy were used for the characterization of electrolytes consisting of additives, V(IV) and sulfuric acid. Currents and capacities of peaks were determined in cyclic voltammograms. The redox reaction were controlled by diffusion and diffusion+adsorption in tetrahydrofuran and dimethyl sulfoxide including positive electrolyte solutions of VRFB, respectively. Resistance values were investigated in electrochemical impedimetric analysis. The morphological characterization of the pencil graphite electrodes used in cyclic voltammetric analysis, were done by scanning electron microscopic analysis.

Tetrahidrofuran ve Dimetil Sülfoksitin Vanadyum Redoks Akışkan Bataryadaki Pozitif Elektrolit Üzerine Olan Etkilerinin Araştırılması

Bu çalışmada, tetrahidrofuran ve dimetil sülfoksitin vanadyum redoks bataryanın pozitif elektrolitinin elektrokimyasal davranışına olan etkilerinin karşılaştırılmalı bir çalışması yapılmıştır. Bu kapsamda, katkı maddesi, V(IV) ve sülfürik asit içeren elektrolit çözeltilerinin karakterizasyonu için dönüşümlü voltametri ve elektrokimyasal empedands spektroskopisi kullanılmıştır. Piklerin akım ve kapasiteleri voltamogramlardan elde edilmiştir. Redoks reaksiyonu tetrahidrofuran içeren pozitif elektrolit çözeltisinde difüzyonken ile kontrollü gerçekleşmişken, dimetil sulfoksit içeren çözeltide difüzyon+adsorbsiyon ile kontrollü olarak gerçekleşmiştir. Elektrokimyasal impedimetrik analizlerde ise direnç değerleri incelenmiştir. Voltametrik analizlerde kullanılan kalem ucu grafit elektrotun yüzey karakterizasyonu taramalı elektron mikroskobu analizleri ile yapılmıştır.

___

Amrouche, S.O., Rekioua, D., Rekioua, T., Bacha, S. Overview of energy storage in renewable energy systems. Int. J. Hydrogen Energy. 41 (2016) 20914–20927.

AlRafea, K., Fowler, M., Elkamel, A., Hajimiragha, A. Integration of renewable energy sources into combined cycle power plants through electrolysis generated hydrogen in a new designed energy hub. Int. J. Hydrogen Energy. 41 (2016) 16718–16728.

Oncel, S.S. Green energy engineering: Opening a green way for the future. J. Clean. Prod. 142 (2017) 3095–3100.

Poizot, P., Dolhem, F. Clean energy new deal for a sustainable world: from non-CO2 generating energy sources to greener electrochemical storage devices. Energy Environ. Sci. 4 (2011) 2003-2019.

Larcher, D., Tarascon J.M. Towards greener and more sustainable batteries for electrical energy storage. Nat. Chem. 7 (2014) 19–29.

Skyllas-Kazacos, M., McCann, J.F. Chapter 10 – Vanadium redox flow batteries (VRBs) for medium- and large-scale energy storage, in: Adv. Batter. Mediu. Large-Scale Energy Storage, Woodhead Publishing. 2015: pp. 329–386.

Li, M.J., Zhao, W., Chen, X., Tao, W.Q. Economic analysis of a new class of vanadium redox-flow battery for medium- and large-scale energy storage in commercial applications with renewable energy, Appl. Therm. Eng. 114 (2017) 802–814.

Skyllas-Kazacos, M., New All-Vanadium Redox Flow Cell, J. Electrochem. Soc. 133 (1986) 1057- 1058.

M. Skyllas-Kazacos, M. Rychick, R. Robins, Allvanadium redox battery, Pat. US 4786567. (1988).

G. Kear, A.A. Shah, F.C. Walsh, Development of the all-vanadium redox flow battery for energy storage: A review of technological, Financial and policy aspects, Int. J. Energy Res. 36 (2012) 1105–1120.

C. Choi, S. Kim, R. Kim, Y. Choi, S. Kim, H. young Jung, J.H. Yang, H.T. Kim, A review of vanadium electrolytes for vanadium redox flow batteries, Renew. Sustain. Energy Rev. 69 (2017) 263–274.

M. Gençten, H. Gürsu, Y. Şahin, Electrochemical investigation of the effects of V(V) and sulfuric acid concentrations on positive electrolyte for vanadium redox flow battery, Int. J. Hydrogen Energy. 41 (2016) 9868–9875.

M. Skyllas-Kazacos, L. Cao, M. Kazacos, N. Kausar, A. Mousa, Vanadium Electrolyte Studies for the Vanadium Redox Battery—A Review, ChemSusChem. 9 (2016) 1521–1543.

A. Parasuraman, T.M. Lim, C. Menictas, M. Skyllas-Kazacos, Review of material research and development for vanadium redox flow battery applications, Electrochim. Acta. 101 (2013) 27–40.

H. Gürsu, M. Gençten, Y. Şahin, One-step electrochemical preparation of graphene-coated pencil graphite electrodes by cyclic voltammetry and their application in vanadium redox batteries, Electrochim. Acta. 243 (2017) 239– 249.

M. Gencten, H. Gursu, Y. Sahin, Anti-precipitation effects of TiO2 and TiOSO4 on positive electrolyte of vanadium redox battery, Int. J. Hydrogen Energy. 42 (2017) 25608–25618.

M. Skyllas-Kazacos, Evaluation of Precipitation Inhibitors for Supersaturated Vanadyl Electrolytes for the Vanadium Redox Battery, Electrochem. Solid-State Lett. 2 (1999) 121-122.

X. Wu, S. Liu, N. Wang, S. Peng, Z. He, Influence of organic additives on electrochemical properties of the positive electrolyte for all-vanadium redox flow battery, Electrochim. Acta. 78 (2012) 475–482.

S. Li, K. Huang, S. Liu, D. Fang, X. Wu, D. Lu, T. Wu, Effect of organic additives on positive electrolyte for vanadium redox battery, Electrochim. Acta. 56 (2011) 5483–5487.

S. Peng, N. Wang, C. Gao, Y. Lei, X. Liang, S. Liu, Y. Liu, Stability of positive electrolyte containing trishydroxymethyl aminomethane additive for vanadium redox flow battery, Int. J. Electrochem. Sci. 7 (2012) 4388–4396.

Z. He, L. Chen, Y. He, C. Chen, Y. Jiang, Z. He, S. Liu, Effect of In3+ ions on the electrochemical performance of the positive electrolyte for vanadium redox flow batteries, Ionics (Kiel). 19 (2013) 1915–1920.

S.K. Park, J. Shim, J.H. Yang, C.S. Jin, B.S. Lee, Y.S. Lee, K.H. Shin, J.D. Jeon, Effect of inorganic additive sodium pyrophosphate tetrabasic on positive electrolytes for a vanadium redox flow battery, Electrochim. Acta. 121 (2014) 321–327.

T. Herr, J. Noack, P. Fischer, J. Tübke, 1,3- Dioxolane, tetrahydrofuran, acetylacetone and dimethyl sulfoxide as solvents for non-aqueous vanadium acetylacetonate redox-flow-batteries, Electrochim. Acta. 113 (2013) 127–133.

A.A. Shinkle, T.J. Pomaville, A.E.S. Sleightholme, L.T. Thompson, C.W. Monroe, Solvents and supporting electrolytes for vanadium acetylacetonate flow batteries, J. Power Sources. 248 (2014) 1299–1305.

M. Gençten, K.B. Dönmez, Y. Şahin, K. Pekmez, E. SuvacI, Voltammetric and electrochemical impedimetric behavior of silica-based gel electrolyte for valve-regulated lead-acid battery, J. Solid State Electrochem. 18 (2014) 2469– 2479.

M. Gencten K.B. Dönmez, Y. Sahin, A novel gel electrolyte for valve-regulated lead acid battery, 18 (2017) 146–160.

M. Gençten, K.B. Dönmez, Y. Şahin, Investigation of the temperature effect on electrochemical behaviors of TiO2 for gel type valve regulated lead-acid batteries, 17 (2016) 882–894.

H. Gursu, M. Gençten, Novel chlorine doped graphene electrodes for positive electrodes of a vanadium redox flow battery, (2018) doi:10.1002/er.4083.

H. Gursu, M. Gencten, Y. Sahin, Preparation of Sulphur-Doped Graphene-Based Electrodes by Cyclic Voltammetry : A Potential Application for Vanadium Redox Flow Battery, Int. J. Electrochem. Sci. 13 (2018) 875–885.

M. Gencten, H. Gursu, Y. Sahin, Effect of α- and γalumina on the precipitation of positive electrolyte in vanadium redox battery, Int. J. Hydrogen Energy. 42 (2017) 25598-25607.

F. Chang, C. Hu, X. Liu, L. Liu, J. Zhang, Coulter dispersant as positive electrolyte additive for the vanadium redox flow battery, Electrochim. Acta. 60 (2012) 334–338
Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi-Cover
  • ISSN: 1300-7688
  • Yayın Aralığı: Yılda 3 Sayı
  • Başlangıç: 1995
  • Yayıncı: Süleyman Demirel Üniversitesi