Hızlı Soğutma Sürecinde Dörtlü Zr48Cu36Ag8Al8 İri Hacimli Metalik Camının Atomik Yapısının Gelişimi

Çalışmamızda Zr48Cu36Al8Ag8 dörtlü alaşımının atomik yapısı ve cam oluşturma süreci moleküler dinamik simülasyon ile gömülü atom metodu kullanılarak araştırıldı. Cam geçiş sürecini ve sıcaklığa bağlı atomik yapı gelişimini araştırmak için ortalama hacim-sıcaklık eğrisi, çiftler dağılım fonksiyonu (PDF) ve çift analiz metodu kullanıldı. 300 K’de hesaplanan toplam PDF, g(r), daha önce rapor edilen deneysel g(r) ile iyi bir uyum sağlamaktadır. Öte yandan ortalama hacim-sıcaklık grafiğinden yararlanılarak belirlenen cam geçiş sıcaklığı da deneysel değerlerle birbirlerine yakındır. Zr-Zr ve Cu-Cu çiftlerinin kısmi PDF'lerin pikleri sıcaklık düşüşüne bağlı olarak normal bir artış eğilimi gösterirken, Al-Al ve Ag-Ag çiftleri ise çok yüksek pikler üreterek anormal bir davranış sergilemektedir. Bu davranışın nedeninin simülasyon hücresindeki Al ve Ag atomlarının topaklanması olduğu görülmüştür. Sistemin mikro yapısı incelendiğinde ise kısa menzil düzenin göstergesi olan 1431, 1541 ve 1551 bağlı çiftlerinin bütün sıcaklıklarda baskın olduğu gözlenmiştir. Azalan sıcaklıkla birlikte özellikle ideal ikosahedral düzeni temsil eden 1551 bağlı çiftlerinin oranının artması sistemin kısa menzil düzeninin gelişerek artmaya devam ettiğini göstermektedir. 

The Evolution of Atomic Structure of the Zr48Cu36Ag8Al8 Bulk Metallic Glass in the Rapid Cooling Process

In our study, atomic structure and glass formation process of Zr48Cu36Al8Ag8 quaternary alloy was investigated by molecular dynamic simulation using embedded atom method. The average volume-temperature curve, the pair distribution function (PDF) and the pair analysis method were used to investigate the glass transition process and the atomic structure development depending on the temperature. The total PDF, g(r), calculated at 300 K is in good agreement with previously reported experimental g(r). On the other hand, the glass transition temperature determined by using the average volume-temperature graph is close to that achieved with experimental works. The peaks of the partial PDFs of the Zr-Zr and Cu-Cu pairs inhibit a normal upward trend due to the temperature drop, whereas the peaks of the Al-Al and Ag-Ag pairs exhibit an abnormal behavior by producing very high peaks. The reason for this behavior was the aggregation of Al and Ag atoms in the simulation cell. When the microstructure of the system was examined, it was observed that the 1431, 1541 and 1551 bonded pairs which are indicative of the short range order were dominant in all temperatures. The increase in the fraction of the 1551 bonded pairs, which represent the ideal icosahedral order together with the decreasing temperature, shows that the short range order of the system continues to develop and increase.

___

  • [1] Karasu B., Yanar A. O., Erdoğan O., Kartal S., Ak G., Pirangil S. E. 2017. Metallic Glasses,. Şişe Cam Technical Bulletin, 45(2(231)), 5-17.
  • [2] Ozdemir Kart S., Tomak M., Uludogan M., Cagin T. 2006. Structural, thermodynamical, and transport properties of undercooled binary Pd-Ni alloys, Materials Science and Engineering A, 435–436, 736–744.
  • [3] Xu J., Xiang M., Dang B., Jian Z. 2017. Relation of cooling rate, undercooling and structure for rapid solidification of iron melt, Computational Materials Science, 128, 98–102.
  • [4] Qi Y., Cagin T., Kimura Y., Goddard III W. A. 1991. Molecular-dynamics simulations of glass formation and crystallization in binary liquid metals: Cu-Ag and Cu-Ni, Phys. Rev. B, 59(5), 3527–3533.
  • [5] Dalgic S. S. S., Celtek M. 2011. Glass forming ability and crystallization of CuTi intermetallic alloy by molecular dynamics simulation, Journal of Optoelectronics and Advanced Materials, 13(11–12), 1563–1569.
  • [6] Inoue A., Kita K., Zhang T., Masumoto T. 1989. An Amorphous La55AI25Ni20 Alloy Prepared by Water Quenching, Materials Transactions, 30(09), 722-725.
  • [7] Inoue A. 2015. Bulk Glassy Alloys: Historical Development and Current Research, Engineering, 1(2), 185–191.
  • [8] Zhong L., Wang J., Sheng H., Zhang Z., Mao S. X. 2014. Formation of monatomic metallic glasses through ultrafast liquid quenching, Nature, 512(7513), 177–80.
  • [9] Inoue A., Takeuchi A. 2011. Recent development and application products of bulk glassy alloys, Acta Materialia, 59(6), 2243–2267.
  • [10] Chen H. . 1974. Thermodynamic considerations on the formation and stability of metallic glasses, Acta Metallurgica, 22(12), 1505–1511.
  • [11] Inoue A. 2000. Stabilization of metallic supercooled liquid and bulk amorphous alloys, Acta Materialia, 48(1), 279–306.
  • [12] Wang W. H., Dong C., Shek C. H. 2004. Bulk metallic glasses, Materials Science and Engineering: R: Reports, 44(2–3), 45–89.
  • [13] Johnson W. L. 1996. Bulk metallic glasses - A new engineering material, Current Opinion in Solid State and Materials Science, 1(3), 383–385.
  • [14] Celtek M., Sengul S., Domekeli U., Canan C. 2016. Molecular dynamics study of structure and glass forming ability of Zr70Pd30 alloy, The European Physical Journal B, 89(3), 1–6.
  • [15] Sengul S., Celtek M., Domekeli U. 2017. Molecular dynamics simulations of glass formation and atomic structures in Zr60Cu20Fe20 ternary bulk metallic alloy, Vacuum, 136, 20–27.
  • [16] Celtek M., Sengul S. 2018. The characterisation of atomic structure and glass-forming ability of the Zr–Cu–Co metallic glasses studied by molecular dynamics simulations,. Philosophical Magazine, 98(9), 783-802.
  • [17] Zhang Q., Zhang W., Inoue A. 2006. New Cu–Zr-based bulk metallic glasses with large diameters of up to 1.5cm, Scripta Materialia, 55(8), 711–713.
  • [18] Zhang Q., Zhang W., Inoue A. 2007. Preparation of Cu36Zr48Ag8Al8 Bulk Metallic Glass with a Diameter of 25 mm by Copper Mold Casting, Materials Transactions, 48(3), 629–631.
  • [19] Smith W., Forester T. R. 1996. DL_POLY_2.0: A general-purpose parallel molecular dynamics simulation package, Journal of Molecular Graphics, 14(3), 136–141.
  • [20] Nosé S. 1984. A unified formulation of the constant temperature molecular dynamics methods,. The Journal of Chemical Physics, 81(1), 511–519.
  • [21] Zhou X. W., Johnson R. A., Wadley H. N. G. 2004. Misfit-energy-increasing dislocations in vapor-deposited CoFe/NiFe multilayers, Physical Review B, 69(14), 144113.
  • [22] Daw M. S., Baskes M. I. 1984. Embedded atom method: derivation and application to impurities, surfaces and other defects in metal, Phsical Review B, 29(12), 6443–6453.
  • [23] Celtek M., Sengul S. 2019. Effects of the cooling rate on the atomic structure and the glass formation process of Co90Zr10 metallic glass investigated by molecular dynamics simulations, Turkish Journal of Physics, 43, 11 – 25.
  • [24] Celtek M., Domekeli U., Sengul S. 2019. Moleküler Dinamik Benzetim Yöntemi ile Isıtma İşlemi Sırasında Platin Metalinin Yapısal Gelişimi ve Erime Noktası Üzerine Atomlar-arası Potansiyel Etkisinin Araştırılması (Investigation of the Effect of Interatomic Potential on the Structural Development, BEU Journal of Science, 8(2), 413-427.
  • [25] Honeycutt J. D., Andersen H. C. 1987. Molecular Dynamics Study of Melting and Freezing of Small Lennard- Jones Clusters, Journal of Physical Chemistry, 91(24), 4950–4963.
  • [26] Celtek M., Sengul S. 2018. Thermodynamic and dynamical properties and structural evolution of binary Zr80Pt20 metallic liquids and glasses: Molecular dynamics simulations, Journal of Non-Crystalline Solids, 498, 32–41.
  • [27] Zhang Q., Zhang W., Inoue A. 2008. Unusual Glass-Forming Ability of New Zr-Cu-Based Bulk Glassy Alloys Containing an Immiscible Element Pair, Materials Transactions, 49(11), 2743–2746.
  • [28] Tang R., Zhou B., Ma Y., Jia F., Zhang X. 2015. Numerical Simulation of Zr-based Bulk Metallic Glass During Continuous Casting Solidification Process, Materials Research, 18(suppl 1), 3–9.
  • [29] Xu Y., Yu M., Xu R., Wang X., Wang Z., Liang Y., Lin J. 2016. Short-to-Medium-Range Order and Atomic Packing in Zr48Cu36Ag8Al8 Bulk Metallic Glass, Metals, 6(10), 240.
  • [30] Ward L., Agrawal A., Flores K. M., Windl W. 2012. Rapid Production of Accurate Embedded-Atom Method Potentials for Metal Alloys, Materials Science; Computational Physics, 12(09), 0619.
  • [31] Celtek M., Sengul S., Domekeli U. 2017. Glass formation and structural properties of Zr50Cu50-xAlxbulk metallic glasses investigated by molecular dynamics simulations, Intermetallics, 84, 62–73.
  • [32] Celik F. A., Kazanc S. 2013. Crystallization analysis and determination of Avrami exponents of CuAlNi alloy by molecular dynamics simulation, Physica B: Condensed Matter, 409(1), 63–70.
  • [33] Celik F. A. 2014. Molecular dynamics simulation of polyhedron analysis of Cu–Ag alloy under rapid quenching conditions, Physics Letters A, 378(30–31), 2151–2156.
  • [34] Voronoi G. 1908. New Parametric Applications Concerning the Theory of Quadratic Forms - Second Announcement,. J. Reine Angew. Math, 134, 198–287.
  • [35] Doye J. P. K., Wales D. J. 1996. The Structure and Stability of Atomic Liquids: From Clusters to Bulk, Science, 271(5248), 484–487.
Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi-Cover
  • ISSN: 1300-7688
  • Yayın Aralığı: Yılda 3 Sayı
  • Başlangıç: 1995
  • Yayıncı: Süleyman Demirel Üniversitesi