Karşılaştırmalı Bir Çalışma: Analsim ve Klinoptilolit İçeren Katkılı Çimentolar

Temiz çevre ve enerji tasarrufu nedeniyle katkılı çimentolara olan talep, giderek yaygınlaşmaktadır. Gelecekte, bu talep piyasadaki katkı maddeleri tarafından karşılanamayacaktır. Bu nedenle, alternatif katkı maddelerine her zaman ihtiyaç duyulacaktır. Bu çalışmanın amacı, sürdürülebilir katkılı çimento üretiminde kullanılan katkı çeşitliliğine bir katkı sağlamaktır. Bu nedenle, bu çalışmada, katkılı çimento üretimlerinde yaygın olarak kullanılan doğal zeolit ​​tipi klinoptilolit (K) ve farklı doğal zeolit ​​tipi analsim (A) karşılaştırılmıştır. Bu zeolitler volkanik tüf kökenli doğal puzolandırlar. Öncelikle, zeolitlerin puzolanik aktiviteleri, mineralojik yapıları, fiziksel ve kimyasal özellikleri belirlendi. Ardından Portland çimentosu (PC) ve doğal zeolit katkılı çimentolar kullanılarak hazırlanan numuneler üzerinde hidratasyon ısısı, priz süreleri ve basınç dayanımı testleri gerçekleştirildi. Test numunelerinde kullanılan zeolitlerin yer değiştirme oranları Portland çimentosu ağırlığının 0, 10, 30 ve %50’ sidir. Puzolanik aktivite testlerinin sonuçlarına göre, kireç-zeolit (puzolan) karışımlarının basınç dayanımları analsim için 6.30 MPa ve klinoptilolit için 9.02 MPa olarak belirlendi. Analsim içeren katkılı çimentoların hidratasyon ısıları, tüm yer değiştirme oranlarında, klinoptilolit içeren katkılı çimentolardan ve Portland çimentosundan daha düşüktür. Analsim içeren katkılı çimentoların priz süreleri klinoptilolit içeren katkılı çimentolardan ve Portland çimentosundan daha kısa olarak belirlendi. Analsim katkılı çimentolar içeren harçların basınç dayanımı, klinoptilolit katkılı çimentolar içeren harçlardan biraz daha yüksektir. Her iki zeolit ​​karışımlı çimento içeren harçların optimum dayanım değerleri %10 yer değiştirme oranında elde edilmiştir. Çalışmadan elde edilen sonuçlara göre, analsim klinoptilolite benzer özellikler sergilemektedir. Bazı durumlarda, bu benzer özelliklerden dolayı, analsim çimento endüstrisinde yaygın olarak kullanılan klinoptilolite alternatif bir katkı maddesi olabilir.

A Comparative Study: Blended Cements Containing Analcime and Clinoptilolite

The demand to blended cements is increasingly widespread due to clean environment and energy saving. In the future, this demand will not be met by currently additives on the market. For this reason, alternative additives will always be needed. The aim of this study is to provide a contribution for additive variety used in sustainable blended cement productions. Therefore, in this study, natural zeolite type clinoptilolite (C) which is widely used in blended cement production and different natural zeolite type analcime (A) are compared. These zeolites are natural pozzolans with volcanic tuff origin. Firstly, pozzolanic activities, mineralogical structures, physical and chemical properties of zeolites were determined. And then, the heat of hydration, setting times and compressive strength tests were performed on samples prepared by using Portland cement (PC) and natural zeolite blended cements. The replacement ratios of zeolites used in test samples are 0, 10, 30 and 50% of Portland cement weight. According to results of pozzolanic activity tests, the compressive strengths of lime-zeolite (pozzolan) mixtures were determined as 6.30MPa for analcime and 9.02MPa for clinoptilolite.  The heats of hydration of blended cements containing analcime were lower than that of blended cements containing clinoptiloite and that of Portland cement at all replacement ratios. The setting times of blended cements containing analcime were determined as shorter than that of blended cements containing clinoptiloite and that of Portland cement. The compressive strengths of mortars containing analcime blended cements were slightly higher than that of mortars containing clinoptilolite blended cements. The optimum strength values of mortars containing both zeolite blended cements were obtained at 10% replacement ratio. According to the results obtained from the study, analcime exhibits similar properties to clinoptilolite. In some cases, due to these similar properties, analcime may be an alternative additive to clinoptilolite which is widely used in blended cement industry.

___

  • [1] World Business Council for Sustainable Development 2011. Cement Industry Energy and CO2 Performance–Getting the numbers right, The cement sustainability initiative report.
  • [2] Karakaya, N., Karakaya, M. Ç. and Temel, A. 2013. Mineralogical and chemical properties and the origin of two types of analcime in SW Ankara, Turkey. Clay Clay Min, 61(3), 231-257.
  • [3] Cobzaru, C., Inglezakis, V. 2012. Mathematical modeling of sorption process of Cu2+ ions on analcime and clinoptilolite. Environ Eng Manag J, 11(11), 2059-2063.
  • [4] Özen, S., Goncuoğlu, M. C., Liguori, B., De Gennaro, B., Cappelletti, P., Gatta, G. D., Lucolano, F., Colella, C. 2016. A comprehensive evaluation of sedimentary zeolites from Turkey as pozzolanic addition of cement-and lime-based binders. Constr Build Mater, 105, 46-61.
  • [5] Akgün, Y., Yazıcıoğlu, Ö.F. 2017. Determination of pozzalanic activity and setting times of analcime. Ordu University J Sci Technol, 7(1), 135-147.
  • [6] Akgün, Y. 2017. Determination of pozzolanic activity for using natural zeolite analcime in sustainability additive cement products. Periodicals of Eng and Natural Sciences, 5(2), 187-193.
  • [7] Inglezakis V.J., Zorpas A. A. 2012. Handbook of natural zeolites. Bentham Science Publishers; ISBN 978-1-60805-446-6 (e-book).
  • [8] Ortega, E. A., Cheeseman, C., Knight, J., Loizidou, M. 2000. Properties of alkali-activated clinoptilolite. Cement and Concrete Research, 30, 1641–1646.
  • [9] Wang, Sh., Peng, Y. 2010. Natural zeolites as effective adsorbents in water and wastewater treatment. Chemical Engineering Journal, 156, 11-24.
  • [10] Trnı´k, A., Scheinherrova´, L., Medved, I. Cerny, R. 2015. Simultaneous DSC and TG analysis of high-performance concrete containing natural zeolite as a supplementary cementitious material. J Therm Anal Calorim, 121(1): 67–73.
  • [11] Kocak, Y., Tasci, E., Kaya, U. 2013. The effect of using natural zeolite on the properties and hydration characteristics of blended cements. Constr. Build. Mater., 47, 720-727.
  • [12] Kocak, Y., Savas, M. 2016. Effect of the PC, diatomite and zeolite on the performance of concrete composites. Computer and Concrete, 17(6), 815-829.
  • [13] Gerengil, H., Kocak, Y., Jazdzewska, A., Kurtay, M. 2017. Corrosion behavior of concrete produced with diatomite and zeolite exposed to chlorides. Comput Concrete, 19(2), 161-169.
  • [14] Perraki T, Kontori E, Tsivilis S, Kakali G. 2010. The effect of zeolite on the properties and hydration of blended cemets. Cement and Concrete Composites, 32, 128-133.
  • [15] Yılmaz, B., Uçar, A., Ötekaya, B., Uz, V. 2007. Properties of zeolitic tuff (clinoptilolite) blended Portland cement. Building and Environment, 42, 3808-3815.
  • [16] Ramezanianpour, A.A., Mousavi, R., Kalhori, M., Sobhani, J., Najimi, M. 2015. Micro and macro level properties of natural zeolite contained concretes. Construction and Building Materials, 101, 347–358.
  • [17] Canpolat, F., Yılmaz, K., Köse, M.M., Sümer, M., Yurdusev, M.A. 2004. Use of zeolite, coal bottom ash and fly ash as replacement materials in cement production. Cement and Concrete Research, 34, 731–735.
  • [18] Uzal, B., Turanli, L., Yucel, H., Goncuoglu, M.C., Culfaz, A. 2010. Pozzolanic activity of clinoptilolite: A comparative study with silica fume, fly ash and a non-zeolitic natural pozzolan. Cement Concrete Res., 40, 398-404.
  • [19] Caputo, D., Liguori, B., Colella, C. 2008. Some advances in understanding the pozzolanic activity of zeolites: The effect of zeolite structure. Cement and Concrete Composites, 30, 455–462.
  • [20] Mertens, G., Snellings, R., Van Balen, K., Bicer-Simsir, B., Verlooy, P., Elsen, J. 2009. Pozzolanic reactions of common natural zeolites with lime and parameters affecting their reactivity. Cement and Concrete Research, 39, 233-240.
  • [21] Liguori, B., Iucolano, F., Gennaro, B., Marroccoli, M., Caputo, D. 2015. Zeolized tuff in environmental friendly production of cementitious material: Chemical and mechanical characterization. Construction and Building Materials, 99, 272-278.
  • [22] Janotka, I., Krajci, L. 2008. Sulfate resistance and passivation ability of the mortar made from pozzolan cement with zeolite. Journal of Thermal Analysis and Calorimetry, 94, 7-14.
  • [23] Karakurt, C., Kurama, H., Topcu, I. B. 2010. Utilization of natural zeolite in aerated concrete production. Cement Concrete Comp, 32(1), 1-8.
  • [24] Bilim, C. 2011. Properties of cement mortars containing clinoptilolite as a supplementary cementitious material. Constr Build Mater, 25(8), 3175-3180.
  • [25] Uzal, B., Turanlı, L. 2012. Blended cements containing high volume of natural zeolites: Properties, hydration and paste microstructure. Cement Concrete Comp, 34(1), 101-109.
  • [26] EN 197-1, 2012. Cement–Part 1: Composition, specification and conformity criteria for common cements.
  • [27] EN 196-1, 2016. Methods of testing cement - Part 1: Determination of strength.
  • [28] TS 25/T1, 2011. Natural pozzolan (Trass) for use in cement and concrete-Definitions, requirements and conformity criteria. Turkish Standarts Institute Ankara Turkey.
  • [29] EN 934-2, 2013. Admixtures for concrete, mortar and grout - Part 2: Concrete admixtures -Definitions, requirements, conformity, marking and labelling.
  • [30] EN 196-6, 2010. Methods of testing cement- Part 6: Determination of fineness.
  • [31] EN 196-3, 2017. Methods of testing cement-Part 3: Determination of setting times and soundness.
  • [32] CEN/TR 16632, 2014. Isothermal Conduction Calorimetry (ICC) for the determination of heat of hydration of cement: State of Art Report and Recommendations.
  • [33] Gervais, C., Ouki, S.K. 2002. Performance study of cementitious systems containing zeolite and silica fume: effects of four metal nitrates on the setting time, strength and leaching characteristics. Journal of Hazardous Materials, 93, 187–200.
  • [34] Küçükyıldırım, E., Uzal, B. 2014. Characteristics of calcined natural zeolites for use in high performance pozzolan blended cements. Construction and Building Materials, 73, 229–34.
  • [35] Ahmadi, B., Sherkarchi, M. 2010. Use of natural zeolite as a supplementary cementitious material. Cement and Concrete Composites, 32, 134-141.
  • [36] Erdoğan, T.Y. 2013. Beton. METU, Ankara Turkey.
  • [37] Raggiotti, B.B., Positieri, M.J., Oshiro, A. 2018. Natural zeolite, a pozzolan for structural concrete. Procedia Structural Integrity, 11, 36-43. [38] Tran, Y., Lee, J., Kumar, P., Kim, K., Lee, S. 2018. Natural zeolite and its application in concrete composite production. Composites Part B Engineering, 165, 354-364.
  • [39] Labbaci, Y., Abdelaziz, Y., Mekkaoui, A., Alouani, A., Labbaci, B. 2017. The use of the volcanic powders as supplementary cementitious materials for environmental-friendly durable concrete. Construction and Building Materials, 133, 468–481.
  • [40] Hamidi, M., Kacimi, L., Cyr, M., Clastres, P. 2013. Evaluation and improvement of pozzolanic activity of andesite for its use in eco-efficient cement. Construction and Building Materials, 47, 1268–1277.
  • [41] Ahmadi, B., Shekarchi, M. 2010. Use of natural zeolite as a supplementary cementitious material. Cement & Concrete Composites, 32, 134–141.