Hibrit Elektrokoagülasyon/Elektrooksidasyon Prosesleri ile Denim Ürün Üretim Atıksularının Arıtımı

Çalışmada, denim ürün işleme atıksularının hibrit Elektrokoagülasyon (EK) ve Elektrooksidasyon (EO) Prosesleri ile arıtımı incelenmiştir. pH, akım yoğunluğu ve elektroliz süresi gibi işletme parametrelerinin KOİ (Kimyasal Oksijen İhtiyacı) ve TÇK (Toplam Çözünmüş Katı) giderimi üzerindeki etkileri belirlenmiştir. pH değerinin 7,48, akım yoğunluğunun 120 A/m2 ve elektroliz süresinin 49,5 dakika olduğu Al (Alüminyum) elektrotlarının kullanıldığı EK prosesi ile >% 65 KOİ ve % 51 TÇK giderimi sağlanmıştır. Aynı koşullarda, EO işleminin KOİ ve TÇK için Ti (Titanyum)/PÇ (Paslanmaz Çelik) elektrotları ile giderim verimleri sırasıyla % >70 ve % 45 olarak bulunmuştur. Optimum koşullarda EK/EO hibrit prosesinin renk giderim verimi % 84 (436 nm), % 93 (525 nm), % 97 (620 nm) olarak elde edilirken, EK ve EO prosesinin enerji tüketimi sırasıyla 14,26 kWsa/m3 ve 22,71 kWsa/m3 olarak tespit edilmiştir. Ayrıca, istatistiksel analiz sonucunda elde edilen R2 ve R2adj değerlerinin 1'e yakın olması, deney sonuçlarının ve istatistiksel çıkarımların uyumlu olduğunu ve işlem parametrelerinin etkilerinin belirlenmesinde Box-Behnken istatistiksel tasarımının etkili olduğunu göstermiştir.

Treatment of Denim Product Manufacturing Wastewater by Hybrid Electrocoagulation/Electrooxidation Processes

In this study, treatment of denim product processing wastewaters by hybrid electrocoagulation (EC) and electrooxidation (EOx) process were investigated. Effects of operating parameters such as pH, current density and electrolysis time on removal of COD (Chemical Oxygen Demand) and TDS (Total Dissolved Solids) were determined. EC process with Al electrodes  where the pH value was 7,48, current density was 120 A/m2, and electrolysis time was 49,5 min resulted in > 65 % COD and  51 % TDS removal. At the same conditions removal efficiencies of EOx process for COD and TDS with Ti/SS electrodes were found to be > % 70 and % 45, respectively. The color removal efficiency of EC / EO hybrid process at optimum conditions was obtained as 84 % ​​(436 nm), 93 % (525 nm), 97 % (620 nm), while the energy consumption of EC and EO process was 14,26 kWh/ m3 and 22 kWh/m3 respectively. The coefficient of determination (R2) value for removal of COD and TDS in the EC and EOx reactor, was found to be 0.99 and 0.97, and R2Adj value was found to be 0,96 and 0,92, respectively. In addition, the results of the statistical analysis indicated that the R2 and R2adj values were close to 1 indicates that the experimental results and statistical inferences were compatible and the Box-Behnken statistical design was effective in order to determine the effects of process parameters.

___

  • [1] Parekh, B. K. 1979. The role of hydrolyzed metal ions in charge reversal and flocculation phenomena, PhD Dissertation, Pennsylvania State University, State College, PA.
  • [2] Joffe, L., Knieper, L. 2000. Electrocoagulation Technology Quickly Removes Barium, Total Suspended Solids from a Water-Retention Pond for Fractions of a Cent per Gallon, Industrial Wastewater, 5, 1-5.
  • [3] Mollah, M. Y. A., Schennach, R., Parga, J. R., Cocke D.L. 2001. Electrocoagulation (EC) Science and Applications. Journal of Hazardous Materials, 84(1), 29-41.
  • [4] Chen, X., Chen, G. C., Yue, P. L. 2000. Separation of Pollutants from Restaurant Wastewater by Electrocoagulation. Seperation and Purification Technology, 19(1-2), 65-76.
  • [5] Chiang, L. C., Chang, J. E., We, T. C. 1995. Indirect Oxidation Effect in Electrochemical Oxidation Treatment of Landfill Leachate, Water Res. 29(2) 671-678.
  • [6] Can, O. T., Gengeç, E., Kobya, M., 2019. TOC and COD Removal from Instant Coffee and Coffee Products Production Wastewater by Chemical Coagulation Assisted Electrooxidation, Journal of Water Process Engineering, 28, 28-35.
  • [7] Rajkumar, D, Palanivelu, K. 2007. Electrochemical Treatment of Industrial Wastewater. J Hazard Materials, 113, 123-129.
  • [8] García-García, A., Martínez-Miranda, V., Martínez-Cienfuegos, I. G., Almazán-Sánchez, P. T., Castañeda-Juárez, M., Linares-Hernández, I. 2015. Industrial Wastewater Treatment by Electrocoagulation-Electrooxidation Processes Powered by Solar Cells, Fuel, 149, 46-54 .
  • [9] Verma, A. K. 2017. Treatment of Textile Wastewaters by Electrocoagulation Employing Fe-Al Composite Electrode, Journal of Water Process Engineering, 20, 168-172.
  • [10] Khorram, A. G., Fallah, N. 2018. Treatment of Textile Dyeing Factory Wastewater by Electrocoagulation with Low Sludge Settling Time: Optimization of Operating Parameters by RSM, Journal of Environmental Chemical Engineering, 6, 635-642.
  • [11] Kumar, A., Nidheesh, P. V., Kumar, M. S. 2018. Composite Wastewater Treatment by Aerated Electrocoagulation and Modified Peroxi-Coagulation Processes, Chemosphere, 205, 587-593.
  • [12] Khemila, B., Merzouka, B., Chouder, A., Zidelkhir, R., Leclerc, J. P., Lapicqu, F. 2018. Removal of a Textile Dye Using Photovoltaic Electrocoagulation, Sustainable Chemistry and Pharmacy, 7, 27-35.
  • [13] Bilińska, L., Blusa, K., Gmurek, M., Ledakowicz, S. 2019. Coupling of Electrocoagulation and Ozone Treatment for Textile Wastewater Reuse, Chemical Engineering Journal, 358, 992-1001.
  • [14] Tavangara, T., Jalali, K., Shahmirzadi, M. A. A., Karimi, M. 2019. Toward Real Textile Wastewater Treatment: Membrane Fouling Control and Effective Fractionation of Dyes/Inorganic Salts Using a Hybrid Electrocoagulation – Nanofiltration Process, Separation and Purification Technology, 216, 550-560.
  • [15] GilPavas, E., Dobrosz-Gómez, I., Miguel-Ángel, Gómez-García, 2019. Optimization and Toxicity Assessment of a Combined Electrocoagulation, H2O2/Fe2+/UV and Activated Carbon Adsorption for Textile Wastewater Treatment, Science of the Total Environment, 651, 551-560.
  • [16] APHA. 2005. American Public Health Association (APHA), Standard Methods for the Examination of Waste and Wastewater (19th ed.), Washington.
  • [17] Merzouk, K., Madani, A., 2010, Using Electrocoagulation-Electroflotation Technology to Treat Synthetic Solution and Textile Wastewater, Two Case Studies, Desalination, 250, 573-577.
  • [18] Nawarkar, C. J., Salkar, V. D. 2019. Solar Powered Electrocoagulation System for Municipal Wastewater Treatment, Fuel, 237, 222-226.