60 GHz Kablosuz Kişisel Ağlar İçin Esnek Kılavuz İşaret Tasarımı

Bu makalede farklı kılavuz işaret stratejilerinin kablosuz kişisel ağların başarımına olan etkisini incelenmiştir. Ağ koordinatörleri kılavuz işaretleri, ağın varlığını belirtmek için kullanırlar. Eğer kılavuz işaretinin menzili uzunsa, komşu ağlarda bulunan cihazlardan daha az girişim alınır. Fakat bu durum belli bir alanda sınırlı sayıda ağa izin verip ağ başına düşen cihaz sayısını arttırır. Kılavuz işaretinin ağ kapasitesine olan etkisini incelemek için IEEE 802.15.3c tabanlı 60 GHz kişisel ağları seçtik. Uzun haberleşme menzili olan kılavuzlar girişim altında olan cihazlara yaklaşık %20 daha fazla kapasite sağlamakla beraber çok daha az sayıda ağa izin vermektedir. Ayrıca bu çalışmada kablosuz ağın girişimden korunması için esnek bir kılavuz işaret sistemi önerilmiştir. Esnek kılavuz işaretleri hem girişime dayanıklılık sağlarken hem de toplam kablosuz ağ sayısını yüksek tutmaktadır.

Flexible Beacon Design For 60 GHz Wireless Personal Area Networks

In this paper we investigate the effect of different beaconing strategies for wireless personal area networks. Beacons are used by network coordinators to indicate the existence of the networks. A long beacon range protects the devices from interference of neighboring networks. Nevertheless increased protection reduces number of possible networks in an area and increases number of devices per network. We investigate the effect of the beacon range in terms of throughput in IEEE 802.15.3c based 60 GHz WPANs. Long range beacons enable %20 more, while allowing %40 less networks. throughput In addition we are suggesting a flexible beacon system which can adjust the piconet protection. In certain situations, flexible beaconing both increase the troughput of protected link and the total number of networks in the area.

___

  • [1] Federal Communications Commission, 1995. Amendment of parts 2, 15 and 97 of the commission’s rules to permit use of radio frequencies above 40GHz for new radio applications, FCC 95-499, ET Docket No. 94- 124, RM-8308.
  • [2] Ikeda, H., Shoji, Y. 2006. 60 GHz Japanese Regulations, IEEE 802.15- 05-0525-03.
  • [3] ETSI, 2009. Fixed Radio Systems; Characteristics and requirements for point-to-point equipment and antennas, EN 302 217-3. [4] IEEE, 2003. IEEE Standard for Information technology - Telecommunications and information exchange between systems - Local and metropolitan area networks - Specific requirements. Part 15.3: Wireless Medium Access Control (MAC) and Physical Layer (PHY) Specifications for High Rate Wireless Personal Area Networks (WPANs), IEEE Std 802.15.3-2003, 1-315.
  • [5] IEEE, 2009. IEEE Standard for Information technology - Telecommunications and information exchange between systems - Local and metropolitan area networks - Specific requirements. Part 15.3: Wireless Medium Access Control (MAC) and Physical Layer (PHY) Specifications for High Rate Wireless Personal Area Networks (WPANs) Amendment 2: Millimeter-wave-based Alternative Physical Layer Extension, IEEE Std 802.15.3c-2009 (Amendment to IEEE Std 802.15.3-2003), 1-187.
  • [6] Baykas, T., Sum, C. S., Lan, Z., Wang, J., Rahman, M. A., Harada, H., Kato, S. 2011. IEEE 802.15. 3c: the first IEEE wireless standard for data rates over 1 Gb/s. IEEE Communications Magazine, 49(7), 114-121.
  • [7] Sum, C. S., Funada, R., Wang, J., Baykas, T., Rahman, M. A., Harada, H., Kato, S. 2009. Error performance and throughput evaluation of a multi-Gbps millimeter-wave WPAN system in multipath environment in the presence of adjacent and co-channel interference. In VTC Spring 2009-IEEE 69th Vehicular Technology Conference (pp. 1-5). IEEE.
  • [8] Prasad, R., Van Lieshout, 1993. Cochannel interference probability for micro- and picocellular systems at 60 GHz, Electronics Letters , 29, pp.1909-1910.
  • [9] Baykas, T., An, X., Sum, C. S., Rahman, M. A., Wang, J., Lan, Z., Funada, R., Hanada, H., Kato, S. 2010. Investigation of Synchronization Frame Transmission in Multi-Gbps 60 GHz WPANs. In 2010 IEEE Wireless Communication and Networking Conference, IEEE, 2010. p. 1-6.
  • [10] Kato, S., Harada, H., Funada, R., Baykas, T., Sum, C. S., Wang, J., Rahman, M. A. 2009. Single carrier transmission for multi-gigabit 60-GHz WPAN systems. IEEE Journal on Selected Areas in Communications, 27(8), 1466-1478.