Termal ve Kimyasal Önişlemlerin Atıksu Çamuru ve Şeker Pancarı Küspesi Karışımından Biyogaz Eldesindeki Etkilerinin Belirlenmesi

Bu çalışmada, evsel atık suların arıtılması sonrası oluşan arıtma çamuru ve şeker fabrikalarından atık olarak çıkan şeker pancarı küspesi kullanılarak biyogaz üretim düzeyleri incelenmiştir. Bu maddelerden biyogaz üretim veriminin arttırılması için termal ve kimyasal önişlemlerin etkileri değerlendirilmiştir.  Çalışmada 30 gün süreyle mezofilik şartlarda anaerobik işlem uygulanmış, biyogaz üretim düzeyleri ve biyogaz içindeki metan oranları ölçülmüştür. Önişlem uygulanmamış şeker pancarı küspesinden metan üretim düzeyleri 84 L/kg UKM (uçucu katı madde) olarak gerçekleşirken, önişlem uygulanmamış arıtma çamuru 67 L/kg UKM düzeyinde metan üretmiştir. Şeker pancarı küspesi ve arıtma çamuru birlikte hammadde olarak kullanıldığında ise metan üretim düzeyi 103 L/kg UKM olarak gerçekleşmiştir. Şeker pancarı küspesi ve arıtma çamuru karışımlarına termal ve kimyasal (O3 ve NaOH) ön işlemler uygulanmıştır. Termal ön işlemli karışımın metan üretim düzeyi 116 L/kg UKM, NaOH ile önişlem uygulanmış karışımın metan üretim düzeyi 99 L/kg UKM ve ozon ile önişlem uygulanmış karışımın metan üretim düzeyi ise 133 L/kg UKM olarak gerçekleşmiştir. Sonuç olarak, kimyasal ve termal önişlemlerin atıklardan biyogaz eldesini arttırdığı tespit edilmiştir. Hammaddelere uygulanan önişlemler organik maddenin daha kolay bozunabilir hale gelmesini sağlamış, böylece daha yüksek biyogaz üretimi gerçekleşmiştir. 

Determination of the Effects of Thermal and Chemical Pretreatment on Biogas Production from Sewage Sludge and Sugar Beet Pulp

In this study, biogas production from sugar beet pulp and sewage sludge was examined. In order to increase the efficiency of biogas production from these materials, the effects of thermal and chemical pretreatments were evaluated. During the study, anaerobic treatment was carried out under mesophilic condition for 30 days. Biogas production levels and methane contents in biogas were measured daily. The sewage sludge produced methane at the level of 67 L/kg VS (volatile solids) without pretreatment, while the methane production from the sugar beet pulp without pretreatment was 84 L/kg VS. When sugar beet pulp and wastewater sludge were used together as raw materials, the production level of methane was 103 L/kg VS. Thermal and chemical (O3 and NaOH) pretreatments were applied to sugar beet pulp and sewage sludge mixtures. The methane production level of the mixture with thermal pretreatment was 116 L/kg VS, the methane production level with basic pretreatment with NaOH was 99 L/kg VS and the methane production level of the mixture subjected to ozone pretreatment was 133 L/kg VS. As a result, chemical and thermal pretreatments were found to increase biogas production from waste materials.  Pretreatments applied to raw materials converted the organic material to more degradable forms and higher biogas yields were obtained.

___

  • [1] Elango, D., Pulikesi, M., Baskaralıngam, P., Ramamurthi, V., Sivanesan, S. 2006. Production of Biogas From Municipal Solid Waste with Domestic Sewage. Journal of Hazardous Materials, 141(2006), 301-304.
  • [2] Lantz, M., Svensson, M., Bjornsson, L, Börjsson, P. 2006. The Prospects for an Expansion of Biogas Systems in Sweden, Incentives, Barriers and Potentials. Energy Policy 35(2006), 1830-1843.
  • [3] Speece, R.E. 1995. Anaerobik Biotechnology for Industrial Wastewater. Vanderbilt University, Tennessee.
  • [4] Mata-Alvarez, J., Macé, S., Llabrés, P. 2000. Anaerobic Digestion Of Organic Solid Wastes. An Overview Of Research Achievements And Perspectives. Bioresource Technology 74(1), 3-16.
  • [5] Weiland, P. 2010. Biogas Production: Current State and Perspectives. Applied Microbiology and Biotechnology, 85(2010), 849-860.
  • [6] Kim, J., Park, C., Kim, T-H., Lee, M., Kim, S., Kim, S-W., Lee, J. 2003. Effects of Varrious Pretreatments for Enhanced Anaerobic Digestion with Waste Activated Sludge. Journal of Bioscience and Bioengineering, 95(2003), 271–275.
  • [7] Yeom, I.T., Lee, K.R., Lee, Y.H., Ahn, K.H. and Lee, S.H., 2002. Effects of ozone treatment on the biodegradability of sludge from municipal wastewater treatment plants. Water Science and Technology, 46(4-5), 421-425.
  • [8] Hutnan, M., Drtil, M., Derco, J., Mrafkova, L., Hornak, M. and Mico, S., 2001. Two-step pilot-scale anaerobic treatment of sugar beet pulp. Polish Journal of Environmental Studies, 10(4), 237-244.
  • [9] Demirel, B. and Scherer, P., 2008. Production of methane from sugar beet silage without manure addition by a single-stage anaerobic digestion process. Biomass and Bioenergy, 32(3), 203-209.
  • [10] Koppar, A. and Pullammanappallil, P., 2008. Single-stage, batch, leach-bed, thermophilic anaerobic digestion of spent sugar beet pulp. Bioresource Technology, 99(8), 2831-2839.
  • [11] Brooks, L., Parravicini, V., Svardal, K., Kroiss, H., Prendl, L. 2008. Biogas From Sugar Beet Press Pulp as Substitute of Fossil Fuel in Sugar Beet Factories. Water Science and Technology, 58 (2008), 1497-1504.
  • [12] Fang, C., Boe, K., Angelidaki, I. 2011. Anaerobic Co-Digestion of By-Products From Sugar Production With Cow Manure. Water Research, 45(2011), 3473-3480.
  • [13] Neves, L., Oliveria, R. and Alves, M. M. 2006. Anaerobic Co-digestion of Coffee Waste and Sewage Sludge. Waste Management, 26(2006), 176-181.
  • [14] Parawira, W., Murto, M., Zvauya, R., Mattiasson, B. 2004. Anaerobic Batchdigestion of Solid Potato Waste Alone And İn Combination With Sugar Beet Leaves. Renewable Energy, 29(2004), 1811–1823.
  • [15] Nieves, D. C., Karimi, K., Horvath, I.S. 2011. Improvement of Biogas Production From Oil Palm Empty Fruit Bunches (OPEFB). Industrial Crops and Products, 34(2011), 1097-1101.
  • [16] Ofoefule, A.U., Uzodinm, E.O., Onukwuli, O.D. 2009. Comparative Study of The Effect of Different Pretreatment Methods On Biogas Yield From Water Hyacinth (Eichhornia Crassipes). International Journal of Physical Sciences, 4(2009), 535-539.
  • [17] Müller, J.A., Winter, A. and Struenkmann, G., 2004. Investigation and assessment of sludge pre-treatment processes. Water Science and Technology, 49(10), 97-104.
  • [18] Ariunbaatar, J., Panico, A., Esposito, G., Pirozzi, F., Lens, P. N. L. 2014. Pretreatment Methods To Enhance Anaerobic Digestion of Organic Solid Waste. Applied Energy, 25(2014), 143-156.
  • [19] Deepanraj B., Sivasubramanian V., Jayaraj S.. 2013. Enhancement of Biogas Production by Pretreatment: A review, IV th International Conference on Advances in Energy Research, Indian Institute of Technology Bombay, Mumbai (2013), 309-319.
  • [20] Angelidaki, I., Alves, M., Bolzonella, D., Borzacconi, L., Campos, J. L., Guwy, A. J., Kalyuzhnyi, S., Jenicek, P., van Lier, J. B. 2009. Defining the Biomethane Potential (BMP) of Solid Organic Wastes and Energy Crops: A Proposed Protocol for Batch Assays. Water Science and Technology, 59 (2009), 927-934.
  • [21] Desai, M., Patel, V., Madamvar, D. 1994. Effect of Temperature And Retention Time On Biomethanation of Cheese Whey-Poultry Waste-Cattle Dung. Environmental Pollution, 83(1994), 311-315.
  • [22] Liotta, F., d’Antonio, G., Esposito, G., Fabbricino, M., van Hullebusch, E.D., L. Lens, P. N., Pirozzi, F., Pontoni, L. 2014. Effect Of Total Solids Content on Methane and Volatile Fatty Acid Production in Anaerobic Digestion of Food Waste. Waste Management & Research, 32(2014), 947-953.
  • [23] Dadaser-Celik, F., Azgin S. T., Yildiz Y. S. 2016. Optimization Of Solid Content, Carbon/Nitrogen Ratio and Food/İnoculum Ratio for Biogas Production From Food Waste. Waste Management and Research, 34(2016), 1241-1248.
  • [24] Climent, M., Ferrer, I., Baeza, M., Artola, A., Vazquez, F. and Font, X. 2007. Effects of Thermal and Mechanical Pretreatments of Secondary Sludge on Biogas Production under Thermophilic Conditions. Chemical Engineering Journal, 133(2007), 335–342.
  • [25] Vranitzky, R., Lahnsteiner, J. 2005. Sewage Sludge Disintegration Using Ozone – A Method of Enhancing the Anaerobic Stabilization of Sewage Sludge. VA TECH WABAH, R&D Process Engineering, Siemensstrasse, Vienna, Austria, 89(2005), 1211.
  • [26] Maragkaki, A. E., Vasileiadis, I., Fountoulakis, M., Kyriakou, A., Lasaridi, K., Manios, T. 2018. Improving Biogas Production. From Anaerobic Co-Digestion of Sewage Sludge With A Thermal Dried Mixture Of Food Waste, Cheese Whey And Olive Mill Wastewater. Waste Management, 71(2018), 644-651.
  • [27] Park, N. D., Thring, R. W., Garton, R. P., Rutherford, M. P., Helle, S. S. 2011. Increased Biogas Production in A Wastewater Treatment Plant by Anaerobic Co-Digestion of Fruit And Vegetable Waste And Sewer Sludge - A Full Scale Study. Water Science and Technology, 64(2011), 1851-1856.
  • [28] Li, X., Zheng, M., Fu, G., Lar, J. S. 2009. Anaerobic Co-Digestion of Cattle Manure with Corn Stover Pretreated by Sodium Hydroxide for Efficient Biogas Production, Energy & Fuels 23(9), 4635-4639.
  • [29] D.C. Nieves, K. Karimi, I.S. Horvath. 2011. Improvement of Biogas Production From Oil Palm Empty Fruit Bunches (OPEFB). Ind Crops Prod. 34(2011), 1097-1101.
  • [30] Pang, Y. Z., Liu, Y. P., Li, X. J., Wang, K. S., Yuan, H. R. 2008. Improving Biodegradability and Biogas Production Of Corn Stover Through Sodium Hydroxide Solid State Pretreatment. Energy & Fuels, 22(2008), 2761-2766.
  • [31] Perez-Elvira, S. I., Nieto Diez, P., Fdz-Polanco, F., 2006. Sludge Minimisation Technologies. Reviews in Environmental Science and Bio/Technology, 5(2006), 375-398.
  • [32] Bougrier, C., Battimelli, A., Delgenes, J., Carrere, H. 2007. Combined Ozone Pretreatment and Anaerobic Digestion For The Reduction of Biological Sludge Production in Wastewater Treatment. Ozone: Science and Engineering, 29(2007), 201-206.
  • [33] Dewil, R., Appels, L., Baeyens, J., Degrève, J. 2007. Peroxidation Enhances the Biogas Production in the Anaerobic Digestion of Biosolids. Journal of Hazardous Materials, 31(2007), 577-581.
Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi-Cover
  • ISSN: 1300-7688
  • Yayın Aralığı: Yılda 3 Sayı
  • Başlangıç: 1995
  • Yayıncı: Süleyman Demirel Üniversitesi