Hemoglobin Geni Taşıyan Rekombinant Erwinia herbicola’da Ağır Metal Varlığında Fenazin Üretimi

Bu çalışmada, Vitreoscilla sp. elde edilen bakteriyel hemoglobin (VHb) geni (vgb) aktarılmış yabanıl Erwinia herbicola ve rekombinat suş Eh [pUC8:15] da ağır metal varlığında fenazin üretimi araştırılmıştır. Yabanıl bakteri, zamana bağlıolarak fenazin üretiminde önemli bir değişim göstermemiştir. Genel olarak, Pb varlığında yabanıl bakteri, 96 saatin sonunda 2.91 mg/ml fenazin üretirken rekombinant bakteride 9.5 mg/ml dir. Fenazin üretimi en yüksek değerlere rekombinant bakteride sırasıyla, 7, 8.8, 8 ve 9.5 mg /ml olacak şekilde Cd, Co, Fe ve Pb varlığında gerçekleşirken; yabanıl bakteride; 6.32, 3.33, 6.02 ve 2.99 mg /ml olacak şekilde Cd, Co, Fe ve Pb varlığında gerçekleşmiştir. Genetik mühendisliği ile vgb, fenazin üretimi artırmak için etkili bir yöntem olabilir.

Phenazine Production in The Presence of Heavy Metals in Recombinant Erwinia herbicola Bearing the Hemoglobin Gene

In this study, from Vitreoscilla sp. recombinant strains were obtained from cloned bacterial hemoglobin (VHb) gene (vgb) Eh [pUC8:15] and its wild-type strain Erwinia herbicola phenazine production in the presence of heavy metals were investigated. Time-dependent production of phenazine in the wild bacteria not shows a significant change. In generally, at the end of 96 hours in the presence of Pb in terms of production of wild-type bacteria phenazine 2.91 μg/ml of recombinant bacteria is to produce fenazin production 9.5 μg /ml, respectively. The average phenazine highest values were 7, 8.8, 8 and 9.5 μg/ml Cd, Co, Fe and Pb for Eh [pUC8:15]. E. herbicola is 6.32, 3.33, 6.02 and 2.99 μg/ml Cd, Co, Fe and Pb, respectively. Genetic engineering vgb, may be an effective method to increase phenazine production.

___

  • Aydin, S. 2003. Menadione knocks out Vitreoscilla
  • haemoglobin (VHb): the current evidence for the role
  • of VHb in recombinant Escherichia coli. Biotechnology
  • and Applied Biochemistry, 38, 71-76.
  • Essar, D.W., Eberly, L., Hadero, A., Crawford, I.P. 1990.
  • Identification and characterization of genes for a second
  • aeruginosa:interchangeability of the two anthranilate
  • synthases and evolutionary implications. Journal of
  • Bacteriol, 172 (2), 884-900.
  • Hardison, R. 1998. Hemoglobins from bacteria to man: evolution of different of patterns of gene expression. Journal of Experimental Biology, 201, 1099-1117.
  • Hernandez, M.E., Kappler, A., Newman, D.K. 2004. Phenazines and other redox-active antibiotics promotemicrobial mineral reduction. Applied and Environmental Microbiology, 70 (2), 921-928.
  • Maddula, V.S.R.K., Pierson, E.A., Pierson, L.S. 2008. Altering the ratio of phenazines in Pseudomonas chlororaphis (aureofaciens)strain 30-84: effects on biofilm formation and pathogen inhibition. Journal of Bacteriol, 190 (8), 2759-2766.
  • Mavrodi, D.V., Peever, T.L., Mavrodi, O.V., Parejko, J.A., Raaijmakers, J.M.,Lemanceau, P., Mazurier, S., Heide, L., Blankenfeldt, W.,
  • Thomashow, L.S. 2010. Diversity and evolution of the phenazine biosynthesis pathway. Applied and Environmental Microbiology, 76 (3), 866-879.
  • Pierson, L.S., Pierson, E.A. 2010. Metabolism and function of phenazines in bacteria: impacts on the behavior of bacteria in the environment and biotechnological processes. Applied Microbiology and Biotechnology, 86, 1659-1670.
  • Selin, C., Habibian, R., Poritsanos, N., Athukorala, S.N.P., Fernando, D., de Kievit, T.R. 2010. Phenazines are not essential for Pseudomonas chlororaphis PA23 Biocontrol of Sclerotinia sclerotiorum, but do play a role in biofilm Ecology, 71, 73-83.
  • Thomashow, L.S., Weller, D.M. 1988. Role of a phenazine antibiotic from Pseudomonas fluorescens in biological control of Gaeumannomyces graminis var. tritici. Journal of Bacteriology, 170 (8), 3499-3508.
  • Wakabayashi, S., Matsubara. H., Webster, D.A. 1986. Primary sequence a dimeric bacterial hemoglobin from Vitreoscilla. Nature, 322: 481-483.
  • Warren, J.B., Loi, R., Rendell, N.B., Taylor, G.W. 1990. Nitric oxide is inactivated by the bacterial pigment pyocyanin. Biochemical Journal, 266, 921-923.
  • Whistler, C.A., Pierson, L.S. 2003. Repression of phenazine antibiotic production in Pseudomonas aureofaciens strain 30-84 by RpeA. Journal of Bacteriology, 185(13), 3718-3725.