Dikdörtgen Kesitli Kanallarda Laminer Akış ve Isı Transferinin Sayısal Olarak İncelenmesi

Bu çalışmada, dikdörtgen kesitli kanaldaki hidrodinamik ve ısıl olarak gelişmekte olan laminer akış ve ısı transferi sayısal olarak incelenmiştir. Çalışma sabit duvar sıcaklığı sınır şartı için kararlı rejim şartında gerçekleştirilmiştir. Sayısal çalışma üç farklı en/boy oranında (α=0.25, 0.50 ve 1.0) ve Reynolds sayısının 600-2000 değerlerinde gerçekleştirilmiştir. Akışkan olarak hava (Prï€0.72) kullanılmıştır. Çalışma, Sayısal Akışkanlar Dinamiği (SAD) programı olan ANSYS Fluent 13.0 paket programı kullanılarak gerçekleştirilmiştir. Sonuçlar, Nusselt sayısı Nu, Darcy sürtünme faktörü f, hidrodinamik Lhd ve ısıl gelişme Lth uzunluklarının Reynolds sayısı Re ile değişimi biçiminde ifade edilmiştir. Buna ilaveten, kanaldaki hız ve sıcaklık dağılımları farklı Reynolds sayılarında verilmiştir. Dairesel kanallarda hidrodinamik ve ısıl gelişme uzunluklarını veren denklemlerin dikdörtgen kanallarda doğru sonuç vermediği görülmüştür. Sayısal çalışmadan elde edilen sonuçlar bu çalışmada kullanılan bütün en/boy oranlarını ve Reynolds sayılarını kapsayacak şekilde en/boy oranı ve Reynolds sayısının fonksiyonu şeklinde genel bir korelasyon ile verilmiştir.

Numerical Investigation of Laminar Flow and Heat Transfer in Rectangular CrossSectional Ducts

In this study, hydrodynamically and thermally developing laminar flow and heat transfer in a rectangular cross-sectional duct have been numerically investigated for steady state and constant surface temperature boundary condition. Numerical solutions have been made for three different aspect ratios (α=0.25, 0.50 and 1.0) and in the Reynolds numbers range of 600 to 2000. Air (Pr0.72) is used as working fluid. A commercial CFD program ANSYS Fluent 13.0 has been employed to carry out the numerical study. Results are given in terms of Nusselt number Nu, Darcy friction factor f, hydrodynamic Lhd and thermal entrance Lth lengths as a function of Reynolds number Re. Also, velocity and temperature contours in the duct are given for different Reynolds numbers. It is seen that the general equation given for circular ducts does not give a true hydrodynamic and thermal entrance length for rectangular ducts. The present results obtained from numerical study are correlated as a function of aspect ratio and Reynolds number involving all aspect ratios and Reynolds numbers used in this study

___

  • Arslan, K., Onur, N., Turgut, O., 2010. Experimental and Three-Dimensional Numerical Investigation of Laminar Flow Heat Transfer in a Rectangular Duct Under Uniform Bottom Surface Temperature With Developing Velocity and Temperature Fields. 7th International Conference on Heat Transfer, Fluid Mechanics and Thermodynamics, 19-21 July, Antalya, Turkey, 847-852.
  • Arslan, K., Onur, N., Turgut, O., 2011. Numerical Investigation of Turbulent Flow and Heat Transfer Inside Rectangular Cross-Sectioned Duct. 18. Ulusal Isı Bilimi ve Tekniği Kongresi, 7-10 Eylül, Zonguldak, 382-387.
  • Chandratilleke T.T., Nursubyakto, 2003. Numerical Prediction of Secondary Flow and Convective Heat Transfer in Externally Heated Curved Rectangular Ducts. International Journal of Thermal Sciences, 42(2), 187-198.
  • Çengel, Y., Ghajar, A.J., 2011. Heat and Mass Transfer. 4th ed., Mc Graw Hill, New York.
  • Etemad, S., Sunden, B., 2006. Numerical Investigation of Turbulent Heat Transfer in a Rectangular- Sectioned Bend 90o Bend. Numerical Heat Transfer Part A: Applications: International Journal of Computation and Methodology, 49, 323-343.
  • Hoagland, L.C., 1960. Fully Developed Turbulent Flow in Straight Rectangular Ducts Secondary Flow, its Couse and Effect on the Primary Flow. Ph.D Thesis Massachusetts Institude of Technology.
  • Huang, C.C., Lin, T.F., 1995. Vortex Flow and Thermal Characterictics in Mixed Convection of Air in a Horizontal Rectangular Duct: Effects of the Reynolds and Grashof Numbers. International Journal of Heat and Mass Transfer, 38(9), 1661-1674.
  • Hunt, I.A., Joubert, P.N., 1977. Turbulent Flow in a Rectangular Duct. 6th Australasian Hydroulic and Fluid Mechanics Conference, 5-9 December, Adelaide, Australia.
  • Jones, O.C., 1976. An Improvement in the Calculation of Turbulent Friction in Rectangular Ducts. Journal of Fluid Engineering, 98(2), 173-180.
  • Leutheusser, H.J., 1984. Velocity Distribution and Skin Friction Resistance in Rectangular Ducts. Journal of Wind Engineering and Industrial Aerodynamics, 16, 315-327.
  • Majumder, S., Roy, D., Debnath, R., Mandal, A., Bhattacharjee, S., 2011. Numerical Study for Forced Convective Turbulent Flow in a Rectangular Elbow. Proceedings of the International Conference on Mechanical Engineering, 18-20 December, Dhaka, Bangladesh, 1-6.
  • Melling, A., Whitelaw, J.H., 1976. Turbulent Flow in Rectangular Duct. Journal of Fluid Mechanics, 78(2), 289-315.
  • Nakamura, H, Matsuura, A, Kiwaki, J., 1982. Laminar Heat-Transfer of High Viscosity Newtonian Fluids in Horizontal Rectangular Ducts. International Chemical Engineering, 22, 479-488.
  • Onur, N., Turgut, O., Arslan, K., Kahraman, S., 2011. Engelli-Oluklu
  • İçerisindeki Türbülanslı Akışın Sayısal Olarak İncelenmesi. 18. Ulusal Isı Bilimi ve Tekniği Kongresi, 7-10 Eylül, Zonguldak, 33-38. Kesitli Bir
  • Kanal Raisee, M., Alemi, H., Iacovides, H., 2006. Prediction of Developing Turbulent Flow in 90o Curved Ducts Using Linear and Non-Linear Low Re k- Models. International Journal for Numerical Methods in Fluids, 51(12), 1379-1405.
  • Rokni, M., Gatski, T.B., 2001. Predicting Turbulent Convective Heat Transfer in Fully Developed Duct Flows. International Journal of Heat and Fluid Flow, 22(4), 381-392.
  • Shah, R.K., London, A.L., 1978. Laminar Flow Forced Convection in Ducts. Academic Press, Newyork.
  • Ünalan S., Akansu, S.O., Konca, A., 2007. Investigation of Heat Transfer and Pressure Drop for Various Obstacles in a Rectangular-Sectioned 90o Bend. International Journal of Numerical Methods for Heat and Fluid Flow, 17(5), 494-511.