Yeşil Alglerden Ulva rigida (C. Agardh) kültürüne farklı karbon kaynaklarının etkisi

Bu çalışmada, Ulva rigida’nın büyüme ve besin içeriği üzerine sodyum asetat ve karbondioksitin etkisi araştırılmıştır. İlk denemede, Conway ortamına ek olarak altı farklı sodyum asetat konsantrasyonu; 3,05 mM (1. grup), 6,10 mM (2. grup), 12,20 mM (3. grup), 24,40 mM (4. grup), 36,60 mM (5. grup) ve 48,80 mM (6. grup) kullanılmıştır. En yüksek biyomas verimi 6. gruptan elde edilmiştir. İkinci denemede Conway ortamına ek olarak beş farklı CO2 konsantrasyonu; 14,20 mM (I. grup), 28,40 mM (II. grup), 42,60 mM (III. grup), 56,81 mM (IV. grup) ve 71,01 mM (V. grup) uygulanmıştır. En yüksek biyomas verimi CO2 kullanılan III. grup için hesaplanmıştır. En yüksek ham protein içeriği 56,81 mM CO2 uygulanan IV. grupta %24,55±0,41 olarak bulunmuştur. En yüksek yağ içeriği 2. grupta %8,28±0,08 olarak belirlenmiştir. Çalışma sonucunda Ulva rigida’nın biyomas artışı miktarının ve besin içeriğinin karbon kaynaklarından etkilendiği belirlenmiştir.

Effect of different carbon sources on green algae Ulva rigida (C. Agardh) culture.

In this study, the influence of sodium acetate and carbondioxide on growth and proximate composition of Ulva rigida L. was studied. In the fist trial, six concentrations of sodium acetate were arranged, e.g. 3.05 mM (group 1), 6.10 mM (group 2), 12.20 mM (group 3), 24.40 mM (group 4), 36.60 mM (group 5) and 48.80 mM (group 6) addition to Conway medium. The maximum biomass yield was achieved in group 6. In the second trail, five concentrations of carbondioxide were arranged, e.g. 14.20 mM (group I), 28.40 mM (group II), 42.60 mM (group III), 56.81 mM (group IV) and 71.01 mM (group V) l day-1 addition to Conway medium. The highest biomass yield was calculated in group III which was added CO2. The highest crude protein content was determined as 24.55±0.41% in group IV which was added 56.81 mM CO2. The maximum lipid content was measured as 8.28±0.08% in group 2. At the end of the study, it was determined that the carbon sources influence the growth and the proximate composition of Ulva rigida.

___

  • Akman, Y., Küçüködük, M., Düzenli, S., Tuğ, G. 2001. Plant Physiology (in Turkish). Palme Press. Ankara. 266-277.
  • AOAC. 2002a. Protein content. 960.39. Offical method of analysis (17 th ed.).Gaithersburg, Marylan: Association of official Analytical Chemists.
  • AOAC. 2002b. Ashes content. 920.153.. offical methodof analysis (17 th ed.).Gaithersburg, Marylan: Association of official Analytical Chemists.
  • Becker, E.W. 1995. Microalgae: Biotechnology and microbiology. Baddiley, J., Carey, N.H., Higgins, I.J., Potter, W.G. (eds). Cambridge University Pres. New York. pp:9-42.
  • Beer, S., Eshel, A. 1983. Photosynthesis of Ulva sp. I. Effects of desiccation when exposed to air. Journal of Experimental Marine Biology and Ecology, 70:91-97.
  • Björnsater, B.R., Wheeler, P.A. 1990. Effect of nitrogen and phosphorus supply on growth and tissue composition of Ulva fenestrata and Enteromorpha intestinalis (Ulvales, Chlorophyta). Journal of Phycology, 26:603-611.
  • Cirik,S., Gökpınar, Ş. 1999. Plankton and its culture (in Turkish). Ege University Fisheries Faculty Periodicals. Bornova, 38:217.
  • Chen, F., Johns, M.R. 1991. Effect of C/N ratio and aeration on the fatty acid composition of heterotrophic Chlorella sorokiniama. Journal of Applied Phycology,. 3:203-209.
  • Chen, F., Chen, H., Gong, X. 1997. Mixotrophic and heterotrophic growth of Haematococcus lacustris and rheological behaviour of the cell suspensions. Bioresource Technology, 62:19-24.
  • DeBusk, T.A., Blakeslee, M., Rhyther, J.H. 1986. Studies on the Outdoor Cultivation of Ulva lactuca L. Botanica Marina, 19:381-386.
  • FAO. 2009. The Satate of World Fisheries and Aquaculture 2006. Food and Agriculture Organisation of the United Nations, Rome.
  • Floreto, E.A.T., Teshima, S., Ishikawa, M. 1996. Effects of nitrogen and phosphorus on growth on the growth and fatty acid composition of Ulva pertusa Kjellman (Cholorophyta). Botanica Marina,. 39: 69-74.
  • Folch, J., Lees, M., Sloane-Stanley, G.H.S. 1957. A Simple Method for the Isolation and Purification of Total Lipids From Animal Tissues. Journal of Biological Chemistry,. 226:497-509,
  • Garcia-Ferris, C., de los Rios, A., Ascaso, C., Moreno, J. 1996. Correlated biochemical and ultrastructural changes in nitrogen straved Euglena gracilis. Journal of Phycology. 32:953-963.
  • Gong, X., Chen, F. 1997. Optimization culture medium for Haematococcus pluvalis. Journal of Applied Phycology. 9:437-444.
  • Göksan, T., Ak, İ., Gökpınar, Ş. 2010. An Alternative Approach to the Traditional Mixotrophic Cultures of Haematococcus pluvialis Flotow (Chlorophyceae). Journal of Microbiology and Biotechnology 20(9):1276-1282.
  • Jeon, Y.C., Cho, C.W., Yun, Y.S. 2006. Combined effects of light intensity and acetate concentration on the growth of unicelular microalga Haematococcus pluvialis. Enzyme and Microbial Technology, 39:490- 495.
  • Kut Güroy, B., Cirik, Ş., Güroy, D., Sanver, F., Tekinay, A. 2007. Effect of Ulva rigida and Cystoseira barbata meals as a food additive on growrh performance, feed utilization, and body composition of Nile Tilapia, Oreochromis niloticus. Turkish Journal of Veterinary and Animal Sciences,. 31(2):91-97.
  • Lobban, C.S., Harrison, P.J. 1994. Seaweed Ecology and Physiology. Cambridge University Pres. New York, 366 pp.
  • Msuya, F.E., Neori, A. 2008. Effect of water aeration and nutrient load level on biomass yield, N uptake and protein content of he Seaweed Ulva lactuca cultured in seawater tanks. Journal of Applied Phycology, 20:1021-1031.
  • Orosa, M., Franqueira, D., Cid, A., Abalde, J. 2001. Carotenoid accumulation in Haematococcus pluvialis in mixotrophic growth. Biotechnology letters, 23:1079-1085.
  • Orosa, M., Franqueira, D., Cid, A., Abalde, J. 2005. Analysis and enhancement of astaxanthin accumulation in Haemtococcus pluvialis. Bioresource Technology, 96:373-378.
  • Ova Kaykaç, G., Cirik, Ş., Tekinay, A. 2008. The seasonal variation of proximate composition and amino acid contents of green algae Ulva rigida (C. Agardh) (in Turkish with English abstract). Ege Journal of Fisheries and Aquatic Sciences, 25(1):9-12.
  • Özdamar, K. 1997. Statistical data analysis by PC programs (in Turkish). I. Anadolu University Periodicals. Eskişehir. 1001:125-130
  • Parker, H.S. 1981. Influence of relativew water motion on the growth, ammonium uptake and carbon and nitrogen composition of Ulva lactuca (Chlorophyceae). Marine Biology, 63:309-318.
  • Smith F.A., Walker, N.A. 1980. Photosynthesis by aquatic plants: effects of unstirred layers in relation to assimilation of CO2 and HCO3 and to carbon isotopic discrimination. New Phytologist. 86:245-259
  • Soe-Htun, U., Ohno, M., Mizuta, S. 1986. Effetcs of salinity and temperature on the growth of the gren alga Enteromorpha prolifera in culture. Reports of the USA Marine Biology Institute, Kochi University, 8:9-13.
  • Troell, M., Halling, C., Nilsson, A., Buschmann, A.H., Kautsky, N., Kautsky, L. 1997. Integrated marine cultivation of Gracilaria chilensis (Gracilariales, Rhodophyta) and salmon cages for reduced environmental impact and increased economic output, Aquaculture, 156:45-61.
  • Yaich, H., Garna, H., Besbes, S., Paquot, M., Blecker, C., Attia, H. 2011. Chemical composition and functional properties of Ulva lactuca seaweed collected in Tunisia. Food Chemistry, 128(4):895-901.