Yaşlanma ve alglerin anti-gerontolojik etkileri

Günümüzde yeni kentsel yaşam, çalışma koşulları ve antropojenik faaliyetlerde kullanılmakta olan kimyasallar ekolojik kirliliği beraberinde getirmiştir. Kimyasalların canlılarda metabolizma ile ilgili, sitotoksik ve mutajenik hasarlar yaptığı bilinmektedir. Kimyasalların mutajenik ve karsinojenik aktiviteleri arasında ilişki vardır. Ülkemizde en sık ölüm sebebi olan kalp-damar hastalıkları ve kanser rahatsızlıkları insanların genetik ömrünü tamamlamalarına engel oluşturmaktadır. Yaşlanma, vücut fonksiyonlarında geri dönüşümsüz ve ilerleyici bir azalma ve bu sırada yeniden şekillenme ile giden, doğum ile ölüm arasında yer alan kompleks yaşam sürecinin doğal bir parçası olarak tanımlanmaktadır. Gerontoloji Bilimi dünyasında canlılarda yaşlanma sürecini açıklamaya çalışan birçok teori mevcuttur. Somatik mutasyonlar teorisi, telomeraz aktivitesi teorisi, serbest radikaller teorisi, genetik yaşlanma teorisi, İmmünoloji ve endokrin teorisi, kalori kısıtlaması teorisi bunlardan bazılarıdır. Bu teoriler içinde serbest oksijen radikallerinin kronik, birikici etkisi ile yaşlanmayı açıklayan görüş, günümüzde önde gelen teorilerinden biridir. Bu teoriye göre küçük ama bütün yaşam boyunca süren antioksidan sistemdeki yetersizlikler yaşlanmaya neden olmaktadır. Serbest radikaller, tek sayıdaki (eşlenmemiş) elektron sayısına sahip atomlar veya atom gruplarıdır ve hücredeki solunum sırasında oksijen bazı moleküller ile etkileşime girdiğinde oluşturulabilir. Oluştuktan sonra, bu oldukça reaktif radikaller, domino gibi, zincirleme reaksiyonlarla DNA gibi hücre moleküllerine zarar verebilirler. Bu hasarların tamir edilemeyip birikmesi kanser gibi hastalıklara neden olabilir ve yaşlanmayı hızlandırır. Antioksidanlar kanser, yaşlanma ve çeşitli hastalıkların ortak yolağı olan hücresel hasarın önlenmesinde yakından ilgilidir. Vücudun kendi antioksidan savunma sistemine ek olarak, serbest radikal hasarını önlemek için antioksidanlar gıdalarla birlikte alınmalıdır. Bu nedenle her geçen gün önemi artan bazı alg çeşitleri ve onlardan teknoloji ile elde edilen antioksidan bileşikler destek besini olarak ticari işletmelerce piyasaya sunulmaktadır. Bazı alglerin kıymetli antioksidanlar içerdiği bilinmektedir ve antioksidanlarca zengin bu alglerin anti-gerontolojik rolü önemli bir konudur. Diyete özellikle alglerden elde edilen antioksidanların eklenmesi ile bazı model hayvan türlerinde ömür uzunluğu ile ilgili pozitif sonuçlar alınmıştır. Bu çalışmanın amacı, alglerin zengin antioksidan içerikleri nedeniyle gelecekteki anti-gerontolojik potansiyellerine dikkat çekmektir

Aging and anti-gerontological effects of algae

Today, a new urban living, chemicals that are being used in working conditions and anthropogenic activity has brought environmental pollution. It is known that chemicals cause metabolismal, cytotoxic and mutagenic damage on living things. There is a relationship between the mutagenic and carcinogenic chemicals activities. The most common cause of death, heart disease and cancer in Turkey, this situation creates obstacles to people's complete genetic life. Aging, leading to progressive and irreversible decrease in body functions and meanwhile remodeling, is defined as a natural part of the complex life cycle between birth and death. There are many theories trying to explain the aging process of living organisms in gerontology science. Somatic mutation theory, telomerase activity theory, the theory of free radicals, the theory of genetic aging, immunology and endocrine theory, calorie restriction theory are some of them. Nowadays, the view which explains the aging with chronic and cumulative effects of the free oxygen radicals is one of the leading theories. According to this theory, small but all imperfections in antioxidant system during the period of life cause aging. Free radicals are atoms or groups of atoms with an odd (unpaired) number of electrons and can be formed when oxygen interacts with certain molecules during the respiration in the cell. Once formed, these highly reactive radicals, such as dominoes, can damage cellular molecules such as DNA by chain reactions. The accumulation of these damages can lead to diseases such as cancer and accelerate aging. Antioxidants are closely related to the prevention of cellular damage, which is a common pathway to cancer, aging and various diseases. In addition to the body's own antioxidant defense system, antioxidants must also be taken with foods to prevent free radical damage. Therefore, some varieties of algae growing in importance every day and antioxidant compounds obtained from them by the technology have been offered to commercial enterprises by the market as nutritional supplements. It is known that some algae contain valuable antioxidants and the anti-gerontological role of these algae rich in antioxidants is an important issue. Some positive results were obtained on animal model species about longevity by dietary addition of antioxidants derived from the algae. The purpose of this study is to draw attention to the future anti-gerontological potentials of algae because of their rich antioxidant content

___

  • Atlı, K. & Bozcuk, A.N. (2002). Telomer ve hücresel yaşlanma. Geriatri, 5(3):111-114.
  • Balboa, E.M., Li, Y.X., Ahn, B.N., Eom, S.H., Domínguez, H., Jiménez, C. & Rodríguez, J. (2015). Photodamage attenuation effect by a tetraprenyltoluquinol chromane meroterpenoid isolated from Sargassum muticum. Journal of Photochemistry and Photobiology B: Biology, 148 51- 58. doi: 10.1016/j.jphotobiol.2015.03.026
  • Bhuvaneswari, S., Murugesan, S., Subha, T.S., Dhamotharan, R. & Shettu, N. (2013). Journal of Chemical and Pharmaceutical Research, 5(3):82-85.
  • Bishop, N.A. & Guarente, L. (2007). Genetic links between diet and lifespan: shared mechanisms from yeast to humans. Nature Reviews Genetics, 8(11):835-844. doi: 10.1038/nrg2188
  • Browner, W.S., Kahn, A.J., Ziv, E., Reiner, A.P., Oshima, J., Cawthon, R.M., & Cummings, S.R. (2004). The genetics of human longevity. The American Journal of Medicine, 117(11):851-860. doi: 10.1016/j.amjmed.2004.06.033
  • Burçak, G. & Andican, G. (2004). Oksidatif DNA hasarı ve yaşlanma. Cerrahpaşa Tıp Dergisi, 35(4):159-169.
  • Cao, J., Wang, J., Wang, S. & Xu, X. (2016). Porphyra species: a mini-review of its pharmacological and nutritional properties. Journal of Medicinal Food, 19(2):111-119. doi: 10.1089/jmf.2015.3426
  • CHA, S.H., KO, S.C., Kim, D., & JEON, Y.J. (2011). Screening of marine algae for potential tyrosinase inhibitor: those inhibitors reduced tyrosinase activity and melanin synthesis in zebrafish. The Journal of Dermatology, 38(4):354-363. 10.1111/j.1346-8138.2010.00983.x
  • Chan, Y.Y., Kim, K.H., & Cheah, S.H. (2011). Inhibitory effects of Sargassum polycystum on tyrosinase activity and melanin formation in B16F10 murine melanoma cells. Journal of Ethnopharmacology, 137(3):1183-1188. doi: 10.1016/j.jep.2011.07.050
  • Chandini, S.K., Ganesan, P. & Bhaskar, N. (2008). In vitro antioxidant activities of three selected brown seaweeds of India. Food Chemistry, 107(2):707- 713. doi: 10.1016/j.foodchem.2007.08.081
  • Chu, W.L., Lim, Y.W., Radhakrishnan, A.K., & Lim, P.E. (2010). Protective effect of aqueous extract from Spirulina platensis against cell death induced by free radicals. BMC Complementary and Alternative Medicine, 10(1):53. doi: 10.1186/1472-6882-10-53
  • Cirik, Ş., Akçalı, B. & Bilecik, N. (2001). Gökova Körfezi (Ege Denizi) deniz bitkileri. Piri Reis Bilim Serisi No.4, DEÜ-DBTE, Yayın No.09.8888.6000/DK.01.001.260, İzmir, 95 s.
  • Çakır Arıca, Ş. & Sarıkaya, R., (2005). Genotoxicity testing of some organophosphate insecticides in the Drosophila wing spot test. Food and Chemical Toxicology, 43(3):443-450. doi:10.1016/j.fct.2004.11.010
  • Çakır, Ş. (2000). Genetics and Some Aging-Related Mechanisms. Turkish Journal of Zoology, 24(2):183-190.
  • Cornish M. L. ve Garbary, D. J. 2010. Antioxidant from macroalgae: Potential applications in human health and nutrition. Algae 25(4):155-171. doi: 10.4490/algae.2010.25.4.155
  • Drum, R., 2013. Sea Vegetables for Food and Medicine, Well Being Journal, 3- 12.
  • Durucan, F. & Turna, İ.İ. (2011). Antalya Batı Kıyılarının (Antalya–Kalkan) Makrobentik Deniz Algleri. Süleyman Demirel Üniversitesi Fen Dergisi, 6(2):91-98
  • El-Sheekh, M.M., Osman, M.E., Dyab, M.A. & Amer, M.S. (2006). Production and characterization of antimicrobial active substance from the cyanobacterium Nostoc muscorum. Environmental Toxicology and Pharmacology, 21(1):42-50.doi: 10.1016/j.etap.2005.06.006
  • Flores, I., Cayuela, M.L., & Blasco, M.A. (2005). Effects of telomerase and telomere length on epidermal stem cell behavior. Science, 309(5738):1253-1256. doi: 10.1126/science.1115025
  • Gökpınar, Ş., Koray, T., Akçiçek, E., Göksan, T., & Durmaz, Y. (2006). Algal Antioksidanlar. Ege Journal of Fisheries and Aquatic Sciences, 23(1- 1):85-89.
  • Guarente, L., & Kenyon, C. (2000). Genetic pathways that regulate ageing in model organisms. Nature, 408(6809): 255-262. doi: 10.1038/35041700
  • Hayflick, L. (1965). The limited in vitro lifetime of human diploid cell strains. Experimental Cell Research, 37(3):614-636. doi: 10.1016/0014-4827(65)90211-9
  • Hayflick, L. (1976). The cell biology of human aging. New England Journal of Medicine, 295(23):1302-1308. doi: 10.1056/NEJM197612022952308
  • Howden, R., 2013. Nrf2 and Cardiovascular Defense Hindawi Publishing Corporation Oxidative Medicine and Cellular Longevity Volume 2013, Article ID 104308, 10 pages. doi:10.1155/2013/104308
  • Huangfu, J., Liu, J., Sun, Z., Wang, M., Jiang, Y., Chen, Z.Y., & Chen, F. (2013). Antiaging effects of astaxanthin-rich alga Haematococcus pluvialis on fruit flies under oxidative stress. Journal of Agricultural and Food Chemistry, 61(32):7800-7804. doi: 10.1021/jf402224w
  • Jang, J., Ye, B.R., Heo, S.J., Oh, C., Kang, D.H., Kim, J.H., Affan, A., Yoon, K.T., Choi, Y.U., Park, S.C., Han, S., Qian, Z.J., Jung, W.K. & Choi, II-W. (2012). Photo-oxidative stress by ultraviolet-B radiation and antioxidative defense of eckstolonol in human keratinocytes. Environmental Toxicology and Pharmacology, 34(2):926-934. doi: 10.1016/j.etap.2012.08.003
  • Kanfi, Y., Naiman, S., Amir, G., Peshti, V., Zinman, G., Nahum, L., Joseph, Z.B. & Cohen, H.Y. (2012). The sirtuin SIRT6 regulates lifespan in male mice. Nature, 483(7388):218-221. doi: 10.1038/nature10815
  • Karan, M. A., & Tufan, F. (2010). Yaşlanma mekanizmaları. Ege Tıp Dergisi, 49(10):11-17.
  • Kasimala, M. B., Mebrahtu, L., Magoha, P. P., Asgedom, G., & Kasimala, M. B. (2015). A review on biochemical composition and nutritional aspects of seaweeds. Caribbean Journal of Science and Technology, 3:789-97.
  • Kidd, P., 2011.Astaxanthin, Cell Membrane Nutrient with Diverse Clinical Benefits and Anti- Aging Potential. Alternative Medicine Review Volume 16, Number 4.
  • Masoro, E. J. (2000). Caloric restriction and aging: an update. Experimental Gerontology, 35(3):299-305. doi: 10.1016/S0531-5565(00)00084-X
  • Medvedev, Z. A. (1990). An attempt at a rational classification of theories of ageing. Biological Reviews, 65(3):375-398. doi: 10.1111/j.1469-185X.1990.tb01428.x
  • Munir, N., Sharif, N., Naz, Shagufta, Marzoor, F. (2013). Algae: A potent antioxidant source. Sky Journal of Microbiology Research, 1(3):22-31, April, 2013 http://www.skyjournals.org/SJMR
  • Norzagaray-Valenzuela, C.D., Valdez-Ortiz, A. Shelton, L.M, Jiménez-Edeza M., Rivera-López, J., Valdez-Flores AGermán-Báez, L.J. (2017). Residual biomasses and protein hydrolysates of three green microalgae species exhibit antioxidant and anti-aging activity. J Appl Phycol, 29:189–198. doi:10.1007/s10811-016-0938-9
  • Oğur, S. (2016). Kurutulmuş alglerin besin değeri ve gıda olarak kullanımı. Ege Journal of Fisheries and Aquatic Sciences, 33(1):67-79. doi: 10.12714/egejfas.2016.33.1.10
  • Olasehinde, T.A., Olaniran, A.O., Okoh, A.I. 2017. Therapeutic Potentials of Microalgae in the Treatment of Alzheimer’s Disease. Molecules 2(3):480. doi:10.3390/molecules22030480
  • Ovando, C.A., de Carvalho, J.C., Pereira, G.V.D.M., Jacques, P., Soccol, V.T., & Soccol, C.R. (2016). Functional properties and health benefits of bioactive peptides derived from Spirulina: A review. Food Reviews International, 1-18.
  • Patra, J.K., Lee, S.W., Kwon, Y.S., Park, J.G., & Baek, K.H. (2017). Chemical characterization and antioxidant potential of volatile oil from an edible seaweed Porphyra tenera (Kjellman, 1897). Chemistry Central Journal, 11(1):34. doi: 10.1186/s13065-017-0259-3
  • Rahnasto-Rilla, M.K., McLoughlin, P., Kulikowicz, T., Doyle, M., Bohr, V.A., Lahtela-Kakkonen, M., Ferruci, L., Hayes, M. & Moaddel, R. (2017). The Identification of a SIRT6 Activator from Brown Algae Fucus distichus. Marine Drugs, 15(6):190. doi: 10.3390/md15060190
  • Rastogi, R.P. (2010). Photoprotective compounds from marine organisms. Journal of Industrial Microbiology & Biotechnology, 37(6):537–558. doi: 10.1007/s10295-010-0718-5
  • Sarıkaya, R. & Çakır, Ş. (2005). Genotoxicity testing of four food preservatives and their combinations in the Drosophila wing spot test. Environmental Toxicology and Pharmacology, 20(3):424-430. doi: 10.1016/j.etap.2005.05.002
  • Sarıkaya, R., Çakır, Ş. & Solak, K. (2006). Effects of food preservatives on the longevity of Drosophila melanogaster (mwhxflr). Kastamonu Education Journal, 14:173-184.
  • Schagen, S.K., Zampeli, V.A., Makrantonaki, E. & Zouboulis, C.C. (2012). Discovering the link between nutrition and skin aging. Dermato- endocrinology, 4(3):298-307. doi: 10.4161/derm.22876
  • Shimokawa, I. & Trindade, L.S. (2010). Dietary restriction and aging in rodents: a current view on its molecular mechanisms. Aging and Disease, 1(2):89.
  • Smith, J.V., Heilbronn, L.K. & Ravussin, E. (2004). Energy restriction and aging. Current Opinion in Clinical Nutrition & Metabolic Care, 7(6):615-622. doi: 10.1097/00075197-200411000-00005
  • Snare, D.J., Fields, A.M., Snell, T.W. & Kubanek, J. (2013). Lifespan extension of rotifers by treatment with red algal extracts. Experimental Gerontology, 48(12):1420-1427. doi: 10.1016/j.exger.2013.09.007
  • Sohal, R.S., Mockett, R.J. & Orr, W.C. (2002). Mechanisms of aging: an appraisal of the oxidative stress hypothesis 1, 2. Free Radical Biology and Medicine, 33(5):575-586. doi: 10.1016/S0891-5849(02)00886-9
  • Southgate, D.A.T. (1990). Dietary fiber and health. Dietary Fibre: Chemical and Biological Aspects, (Southgate, D.A.T., Waldron, K., johnson, I.T. and Fenwick, G.R., eds), pp. 282-284, The Royal Society of Chemistry, Cambridge, UK.
  • Şekeroğlu, Z.A. & Şekeroğlu, V. (2009). Oksidatif mitokondrial hasar ve yaşlanmadaki önemi. Türk Bilimsel Derlemeler Dergisi, 2(2):69-74.
  • Taupin, P. (2010). A dual activity of ROS and oxidative stress on adult neurogenesis and Alzheimer's disease. Central Nervous System Agents in Medicinal Chemistry (Formerly Current Medicinal Chemistry-Central Nervous System Agents), 10(1):16-21.
  • Wang, H.M.D., Li, X.C., Lee, D.J. & Chang, J.S. (2017). Potential biomedical applications of marine algae. Bioresource Technology, 244(2):1407-1415. doi: 10.1016/j.biortech.2017.05.198
  • Wong, K.H. & Cheung, P. C. (2000). Nutritional evaluation of some subtropical red and green seaweeds: Part I-proximate composition, amino acid profiles and some physico-chemical properties. Food Chemistry, 71(4):475-482. doi: 10.1016/S0308-8146(00)00175-8
  • Zeybek, N. (1969). Türkiye'nin Akdeniz Algleri. Bodrum-Finike Körfezi sahil boyu, 2. Ege Denizi-Edremit Saros Körfezi-Sile. TBAG-124 nolu proje.
  • Zhang, Q., Li, N., Zhou, G., Lu, X., Xu, Z. & Li, Z. (2003). In vivo antioxidant activity of polysaccharide fraction from Porphyra haitanesis (Rhodephyta) in aging mice. Pharmacological Research, 48(2):151-155. doi: 10.1016/S1043-6618(03)00103-8
  • Zhao, T., Zhang, Q., Qi, H., Liu, X. & Li, Z. (2008). Extension of life span and improvement of vitality of Drosophila melanogaster by long-term supplementation with different molecular weight polysaccharides from Porphyra haitanensis. Pharmacological Research, 57(1):67-72. doi: 10.1016/j.phrs.2007.12.001
Su Ürünleri Dergisi-Cover
  • ISSN: 1300-1590
  • Yayın Aralığı: Yılda 4 Sayı
  • Başlangıç: 1984
  • Yayıncı: Aynur Lök