Otoliths are calcium carbonate (CaCO3) accumulations. Under the influence of different ecosystems morphological and chemical composition change. In this study, economically important two demersal fish species; European hake Merluccius merluccius (Linnaeus, 1758) and Stripet red mullet (Mullus surmuletus Linnaeus, 1758) was examined. Otoliths (Sagitta) belonging to these two species have been studied both chemically and morphologicall. Morphometric measurements of otoliths (length, mm; width, mm; area, mm2; perimeter, mm) in the sagittal of each species was made by the Leica M125 tri-ocular microscope. In the chemical analysis of otoliths, strontium (Sr), magnesium (Mg) and calcium (Ca) trace element amounts, the ratios of Sr and Mg trace elements to Ca element (Sr/Ca and Mg/Ca) were determined. For the micro-chemical analysis of otoliths ICP-MS was used. The highest magnesium (24.92±9.57 mmol/mol) and strontium (26.17±1.81 mmol/mol) element values were found in the otolith of red mullet. The difference between strontium (Sr) and magnesium (Mg) amounts for two fish species was found to be significant (P<0.05). In addition to it was found that the difference between them in the amount of calcium is significant (P<0.001). The shape indexes of otoliths are significantly different between the two fish species. Especially in terms of roundness (RD) and aspect ratio (AR) (P<0.001). The results of this study provide information about the habitats of two economic importance demersal fish species. Since such studies can give information about the habitat areas of fish species, they are important for tracking stocks, migration routes and sustainable fisheries.
Otolitler kalsiyum karbonat (CaCO3) birikimleridir. Farklı ekosistemlerin etkisi altında morfolojik ve kimyasal olarak değişmektedir. Bu çalışmada, ekonomik olarak önemli iki demersal balık türü; Bakalyaro Merluccius merluccius (Linnaeus, 1758) ve tekir (Mullus surmuletus Linnaeus, 1758) balığına ait otolitler (Sagitta) hem kimyasal hem de morfolojik olarak incelenmiştir. Otolitlerin (uzunluk, mm; genişlik, mm; alan, mm2; çevre, mm) morfometrik ölçümleri Leica M125 tri-oküler mikroskop ile yapılmıştır. Otolit yapısındaki stronsiyum (Sr), magnezyum (Mg) ve kalsiyum (Ca) iz element miktarları ile Sr ve Mg eser elementlerinin Ca elementine (Sr/Ca ve Mg/Ca) oranları belirlenmiştir. Otolitlerin mikro kimyasal analizi için ICP-MS kullanılmıştır. En yüksek magnezyum (24,92±9,57 mmol/mol) ve stronsiyum (26,17±1,81 mmol/mol) element değerleri tekir otolitinde tespit edilmiştir. İki balık türü için stronsiyum (Sr) ve magnezyum (Mg) miktarları arasındaki fark önemli bulunmuştur (P<0,05). Ayrıca kalsiyum miktarı açısından aralarındaki farkın oldukça önemli olduğu tespit edilmiştir (P<0,001). Otolitlerin şekil indeksleri iki balık türü arasında önemli ölçüde, özellikle yuvarlaklık (RD) ve en boy oranı (AR) açısından önemli olduğu tespit edilmiştir (P<0,001). Bu çalışmanın sonuçları, ekonomik önemi olan iki demersal balık türünün habitatları hakkında bilgi verdiğinden; stokları, göç yolları ve sürdürülebilir balıkçılığın takibi açısından önem arz etmektedir.
___
Avigliano, E., Martinez, C.F.R. & Volpedo, A.V. (2014). Combined use of otolith microchemistry and morphometry as indicators of the habitat of the silverside (Odontesthes bonariensis) in a freshwater–estuarine environment. Fisheries Research, 149, 55-60. DOI: 10.1016/j.fishres.2013.09.013
Avigliano, E. & Volpedo, A.V. (2013). Use of otolith strontium: calcium ratio as an indicator of seasonal displacements of the silverside (Odontesthes bonariensis) in a freshwater–marine environment. Marine and Freshwater Research, 64(8), 746-751. DOI: 10.1071/MF12165
Bakkari, W., Mejri, M., Ben Mohamed, S., Chalh, A., Quignard, J.P. & Trabelsi, M. (2020). Shape and Symmetry in the otolith of two different species Mullus barbatus and Mullus surmuletus (actinopterygii: perciformes: mullidae) in Tunisian waters. Acta Ichthyologica et Piscatoria, 50(2). DOI: 10.3750/AIEP/02760
Bal, H., Türker, D. & Zengin, K. (2018). Morphological characteristics of otolith for four fish species in the Edremit Gulf, Aegean Sea, Turkey. Iranian Journal of Ichthyol, 5(4): 303-311
Barret, R. T. (1990). Diets of shags, Phalacrocorax aristotelis, and cormorants, P. carbo in Norway and possible implications for gadoid stock recruitment. Marine Ecology Progress Series, 66, 205-218. DOI: 10.3354/meps066205
Başusta, N. & Khan, U. (2021). Sexual dimorphism in the otolith shape of shi drum, Umbrina cirrosa (L.), in the eastern Mediterranean Sea: Fish size– otolith size relationships. Journal of Fish Biology. 99(1), 164-174. DOI: 10.1111/jfb.14708
Campana, S.E. & Neilson, J.D. (1985). Microstructure of fish otoliths. Canadian Journal of Fisheries and Aquatic Sciences, 42(5), 1014-1032. DOI: 10.1139/f85-127
Campana, S.E. & Casselman, J.M. (1993). Stock discrimination using otolith shape analysis. Canadian Journal of Fisheries and Aquatic Sciences, 50(5), 1062-1083. DOI: 10.1139/f93-123
Campana, S. E., Gagné, J. A. & McLaren, J. W. (1995). Elemental fingerprinting of fish otoliths using ID-ICPMS. Marine Ecology Progress Series, 122, 115-120. DOI: 10.3354/meps122115
Campana, S.E. (1999). Chemistry and composition of fish otoliths: pathways, mechanisms and applications. Marine Ecology Progress Series, 188, 263-297. DOI: 10.3354/meps188263
Campana, S.E. & Thorrold, S.R. (2001). Otoliths, increments, and elements: keys to a comprehensive understanding of fish populations?. Canadian Journal of Fisheries and Aquatic Sciences, 58(1), 30-38. DOI: 10.1139/f00-177
Congiu, L., Rossi, R. & Colombo, G. (2002). Population analysis of the sand smelt Atherina boyeri (Teleostei Atherinidae), from Italian coastal lagoons by random amplified polymorphic DNA. Marine Ecology Progress Series, 229, 279-289. DOI: 10.3354/meps229279
Correia, A.T., Pipa, T., Gonçalves, J.M.S., Erzini, K. & Hamer, P.A. (2011). Insights into population structure of Diplodus vulgaris along the SW Portuguese coast from otolith elemental signatures. Fisheries Research, 111(1-2), 82-91. DOI: 10.1016/j.fishres.2011.06.014
Degens, E.T., Deuser, W.G. & Haedrich, R.L. (1969). Molecular structure and composition of fish otoliths. Marine Biology, 2(2), 105-113. DOI: 10.1007/BF00347005
Elsdon, T.S. & Gillanders, B.M. (2004). Interactive effects of temperature and salinity on otolith chemistry: challenges for determining environmental histories of fish. Canadian Journal of Fisheries and Aquatic Sciences, 59(11), 1796-1808. DOI: 10.1139/f02-154
Farrell, J. & Campana, S.E. (1996). Regulation of calcium and strontium deposition on the otoliths of juvenile tilapia, Oreochromis niloticus. Comparative Biochemistry and Physiology Part A: Physiology, 115(2), 103-109. DOI: 10.1016/0300-9629(96)00015-1
Friedland, K.D. & Reddin, D.G. (1994). Use of otolith morphology in stock discriminations of Atlantic salmon (Salmo salar). Canadian Journal of Fisheries and Aquatic Sciences, 51(1), 91-98. DOI: 10.1139/f94-011
Froese, R. & Pauly, D. (2008). World wideweb electronic publication. Retrieved on January 11, 2021 from www.fishbase.org.
Gillanders, B.M. (2005). Otolith chemistry to determine movements of diadromous and freshwater fish. Aquatic Living Resources, 18(3), 291- 300. DOI: 10.1051/alr:2005033
Gonzalez‐Salas, C. & Lenfant, P. (2007). Interannual variability and intraannual stability of the otolith shape in European anchovy Engraulis encrasicolus (L.) in the Bay of Biscay. Journal of Fish Biology, 70(1), 35- 49. DOI:10.1111/j.1095-8649.2006.01243.x
Gowan, C., Young, M.K., Fausch, K.D. & Riley, S.C. (1994). Restricted movement in resident stream salmonids: a paradigm lost? Canadian Journal of Fisheries and Aquatic Sciences, 51(11), 2626-2637. DOI: 10.1139/f94-262
Grammer, G.L., Morrongiello, J.R., Izzo, C., Hawthorne, P.J., Middleton, J.F. & Gillanders, B.M. (2017). Coupling biogeochemical tracers with fish growth reveals physiological and environmental controls on otolith chemistry. Ecological Monographs, 87(3), 487-507. DOI: 10.1002/ecm.1264
Hamer, P. A. & Jenkins, G.P. (2007). Comparison of spatial variation in otolith chemistry of two fish species and relationships with water chemistry and otolith growth. Journal of Fish Biology, 71(4), 1035-1055. DOI: 10.1111/j.1095-8649.2007.01570.x
Hoff, G.R. & Fuiman, L.A. (1995). Environmentally induced variation in elemental composition of red drum (Sciaenops ocellatus) otoliths. Bulletin of Marine Science, 56(2), 578-591.
Jarvis, I. & Jarvis, K.E. (1992). Plasma spectrometry in the earth sciences: techniques, applications and future trends. Chemical Geology, 95(1-2), 1-33. DOI: 10.1016/0009-2541(92)90041-3
Kraus, R. T. & Secor, D. H. (2004). Incorporation of strontium into otoliths of an estuarine fish. Journal of Experimental Marine Biology and Ecology, 302(1), 85-106. DOI: 10.1016/j.jembe.2003.10.004
Leakey, C.D., Attrill, M J. & Fitzsimons, M.F. (2009). Multi-element otolith chemistry of juvenile sole (Solea solea), whiting (Merlangius merlangus) and European seabass (Dicentrarchus labrax) in the Thames Estuary and adjacent coastal regions. Journal of Sea Research, 61(4), 268-274. DOI: 10.1016/j.seares.2008.12.002
Lin, Y.J., Yalçin‐Özdilek, S., Iizuka, Y., Gümüş, A. & Tzeng, W.N. (2011). Migratory life history of European eel Anguilla anguilla from freshwater regions of the River Asi, southern Turkey and their high otolith Sr: Ca ratios. Journal of Fish Biology, 78(3), 860-868. DOI: 10.1111/j.1095-8649.2011.02903.x
Lombarte, A., Torres, G.J. & Morales-Nin, B. (2003). Specific Merluccius otolith growth patterns related to phylogenetics and environmental factors. Journal Marine Biology, 83: 277-281. DOI: 10.1017/S0025315403007070h
Mahe, K., Villanueva, M.C., Vaz, S., Coppin, F., Koubbi, P. & Carpentier, A. (2014). Morphological variability of the shape of striped red mullet Mullus surmuletus in relation to stock discrimination between the Bay of Biscay and the eastern English Channel. Journal of Fish Biology, 84(4), 1063- 1073. DOI: 10.1111/jfb.12345
Martin, G.B. & Thorrold, S.R. (2005). Temperature and salinity effects on magnesium, manganese, and barium incorporation in otoliths of larval and early juvenile spot Leiostomus xanthurus. Marine Ecology Progress Series, 293, 223-232. DOI: 10.3354/meps293223
Martucci, O., Pietrelli, L. & Consiglio, C. (1993). Fish otoliths as indicators of the cormorant Phalacrocorax carbo diet (Aves, Pelecaniformes). Italian Journal of Zoology, 60(4), 393-396. DOI: 10.1080/11250009309355845
Miller, J.A. (2011). Effects of water temperature and barium concentration on otolith composition along a salinity gradient: implications for migratory reconstructions. Journal of Experimental Marine Biology and Ecology, 405(1-2), 42-52. DOI: 10.1016/j.jembe.2011.05.017
Monteiro, L.R., Di Beneditto, A.P.M., Guillermo, L.H. & Rivera, L.A. (2005). Allometric changes and shape differentiation of sagitta otoliths in sciaenid fishes. Fisheries Research, 74(1-3), 288-299. DOI: 10.1016/j.fishres.2005.03.002
Morales-Nin, B., Swan, S.C., Gordon, J.D., Palmer, M., Geffen, A.J., Shimmield, T. & Sawyer, T. (2005). Age-related trends in otolith chemistry of Merluccius merluccius from the north-eastern Atlantic Ocean and the western Mediterranean Sea. Marine and Freshwater Research, 56(5), 599-607. DOI: 10.1071/MF04151
Morales-Nin, B., Pérez-Mayol, S., Palmer, M. & Geffen, A.J. (2014). Coping with connectivity between populations of Merluccius merluccius: An elusive topic. Journal of Marine Systems, 138, 211-219. DOI: 10.1016/j.jmarsys.2014.04.009
Morat, F., Mante, A., Drunat, E., Dabat, J., Bonhomme, P., Harmelin-Vivien, M. & Letourneur, Y. (2014). Diet of Mediterranean European shag, Phalacrocorax aristotelis desmarestii, in a northwestern Mediterranean area: a competitor for local fisheries. Scientific reports of Port-Cros National Park, 28, 113-132.
Özpiçak, M., Saygın, S. & Polat, N. (2017). The length-weight and lengthlength relationships of bluefish, Pomatomus saltatrix (Linnaeus, 1766) from Samsun, middle Black Sea region. Natural and Engineering Sciences, 2(3), 28-36. DOI: 10.28978/nesciences.349265
Pannella, G. (1971). Fish otoliths: daily growth layers and periodical patterns. Science, 173(4002), 1124-1127. DOI: 10.1126/science.173.4002.1124
Ponton, D. (2006). Is geometric morphometrics efficient for comparing otolith shape of different fish species? Journal of Morphology, 267(6), 750-757. DOI: 10.1002/jmor.10439
Popper, A.N. & Coombs, S. (1980). Auditory mechanisms in teleost fishes: significant variations in both hearing capabilities and auditory structures are found among species of bony fishes. American Scientist, 68(4), 429- 440.
Popper, A.N., Ramcharitar, J. & Campana, S. E. (2005). Why otoliths? Insights from inner ear physiology and fisheries biology. Marine and freshwater Research, 56(5), 497-504. DOI: 10.1071/MF04267
Reis-Santos, P., Tanner, S.E., Elsdon, T. S., Cabral, H. N. & Gillanders, B.M. (2013). Effects of temperature, salinity and water composition on otolith elemental incorporation of Dicentrarchus labrax. Journal of Experimental Marine Biology and Ecology, 446, 245-252. DOI: 10.1016/j.jembe.2013.05.027
Rieman, B.E., Myers, D.L. & Nielsen, R.L. (1994). Use of otolith microchemistry to discriminate Oncorhynchus nerka of resident and anadromous origin. Canadian Journal of Fisheries and Aquatic Sciences, 51(1), 68-77. DOI: 10.1139/f94-009
Rooker, J.R., Secor, D.H., Zdanowicz, V.S. & Itoh, T. (2001). Discrimination of northern bluefin tuna from nursery areas in the Pacific Ocean using otolith chemistry. Marine Ecology Progress Series, 218, 275-282. DOI: 10.3354/meps218275
Sarimin, A.S. & Mohamed, C.A.R. (2014). Sr/Ca, Mg/Ca and Ba/Ca ratios in the otolith of sea bass in Peninsular Malaysia as salinity influence markers. Sains Malaysiana, 43(5), 757-766.
Secor, D.H., Trice, T.M. & Hornick, H.T. (1995). Validation of otolith-based ageing and a comparison of otolith and scale-based ageing in markrecaptured Chesapeake Bay striped bass, Morone saxatilis. Fishery Bulletin, 93(1), 186-190.
Schwarzhans, W. (1999). A comparative morphological treatise of recent and fossil otoliths of the order Pleuronectiformes. In F.H. Pfeil (Ed.), Piscium Catalogus: Part Otolithi Piscium, 2: 1-391, Verlag F. Pfeil, München.
Sturrock, A.M., Trueman, C.N., Darnaude, A.M. & Hunter, E. (2012). Can otolith elemental chemistry retrospectively track migrations in fully marine fishes? Journal of Fish Biology, 81(2), 766-795. DOI: 10.1111/j.1095-8649.2012.03372.x
Sturrock, A.M., Hunter, E., Milton, J. A., E.I.M.F., Johnson, R.C., Waring, C.P. & Trueman, C.N. (2015). Quantifying physiological influences on otolith microchemistry. Methods in Ecology and Evolution, 6(7), 806-816. DOI: 10.1111/2041-210X.12381
Swan, S.C., Geffen, A.J., Morales-Nin, B., Gordon, J.D., Shimmield, T., Sawyer, T. & Massuti, E. (2006). Otolith chemistry: an aid to stock separation of Helicolenus dactylopterus (bluemouth) and Merluccius merluccius (European hake) in the Northeast Atlantic and Mediterranean. ICES Journal of Marine Science, 63(3), 504-513. DOI: 10.1016/j.icesjms.2005.08.012
Quinn, T.P. (1993). A review of homing and straying of wild and hatcheryproduced salmon. Fisheries research, 18(1-2), 29-44. DOI: 10.1016/0165-7836(93)90038-9
Thorrold, S.R., Campana, S.E., Jones, C.M. & Swart, P.K. (1997). Factors determining δ13C and δ18O fractionation in aragonitic otoliths of marine fish. Geochimica et Cosmochimica Acta, 61(14), 2909-2919. DOI: 10.1016/S0016-7037(97)00141-5
Thorrold, S.R., Latkoczy, C., Swart, P.K. & Jones, C. M. (2001). Natal homing in a marine fish metapopulation. Science, 291(5502), 297-299. DOI: 10.1126/science.291.5502.297
Tracey, S. R., Lyle, J.M., & Duhamel, G. (2006). Application of elliptical Fourier analysis of otolith form as a tool for stock identification. Fisheries Research, 77(2), 138-147. DOI: 10.1016/j.fishres.2005.10.013
Torres, G.J., Lombarte, A. & Morales-Nin, B. (2000). Variability of the sulcus acusticus in the sagittal otolith of the genus Merluccius (Merlucciidae). Fisheries Research, 46(1-3), 5-13. DOI: 10.1016/S0165-7836(00)00128-4
Turan, C. (2006). The use of otolith shape and chemistry to determine stock structure of Mediterranean horse mackerel Trachurus mediterraneus (Steindachner). Journal of Fish Biology, 69, 165-180. DOI: 10.1111/j.1095-8649.2006.01266.x
TÜİK (2021). Türkiye İstatistik Kurumu. World Wide Web electronic publication. Retrieved in January 21, 2021 from https://data.tuik.gov.tr.
Tuset, V.M., Lozano, I.J., González, J.A., Pertusa, J.F., & García‐Díaz, M.M. (2003). Shape indices to identify regional differences in otolith morphology of comber, Serranus cabrilla (L., 1758). Journal of Applied Ichthyology, 19(2), 88-93. DOI: 10.1046/j.1439-0426.2003.00344.x
Tuset, V.M., Lombarte, A. & Assis, C.A. (2008). Otolith atlas for the western Mediterranean, north and central eastern Atlantic. Scientia Marina, 72(S1), 7-198. DOI: 10.3989/scimar.2008.72s17
Velando, A. & Freire, J. (1999). Intercolony and seasonal differences in the breeding diet of European shags on the Galician coast (NW Spain). Marine Ecology Progress Series, 188, 225-236. DOI: 10.3354/meps188225
Wells, B.K., Thorrold, S.R. & Jones, C.M. (2000). Geographic variation in trace element composition of juvenile weakfish scales. Transactions of the American Fisheries Society, 129(4), 889-900. DOI: 10.1577/1548-8659(2000)129<0889:GVITEC>2.3.CO;2
Yıldız, T. & Karakulak, F.S. (2018). Batı Karadeniz (Şile-İğneada) dip trol balıkçılığında av kompozisyonu. Journal of Aquaculture Engineering and Fisheries Research, 4(1), 20-34.