Motor beceri öğreniminde kas Ko-aktivasyon ve rekürrent inhibisyon aktivitesinin fonksiyonel önemi

Merkezi sinir sisteminin hareket mekanizmalarından biri olan kas ko-aktivasyonu, bir eklem etrafındaki iki ya da daha fazla kasın eş zamanlı aktivasyonu ile karakterize edilmektedir. Gerçekleştirilen araştırmalarda, kas koaktivasyon düzeyinin sporcuların beceri düzeyine göre farklılaştığı ifade edilmektedir. Ayrıca, belli beceri düzeyine sahip sporcular kendi spor disiplinlerine özgü düşük seviyeli kassal ko-aktivasyonu içeren, spesifik kas aktivasyon kalıbı (pattern) sergilemektedirler. Elit sporcuların, orta düzey ve başlangıç düzeyindeki sporculardan farklı aktivasyongevşeme ve\veya da ko-aktivasyon stratejisine sahip oldukları gerçekleştirilen araştırmalarla ortaya koyulmuştur. Elit sporcularda ortaya çıkan bu farklı kassal aktivasyon stratejisi, spesifik hareket kalıbının öğrenilmesi ile spinal ve supraspinal düzeylerde meydana gelen değişimlerin sonucudur. Spesifik hareket kalıbının öğrenilmesi, Rekürrent aktivite (antrenman, günlük aktiviteler) ile gerçekleşmekte ve kas ko-aktivasyonunda azalmaya neden olmaktadır. Bu derleme çalışmasının amacı, rekürrent inhibisyon ve ko-aktivasyon motor kontrol biçimlerinin spor performansı açısından fonksiyonel önemini tartışmaktır

FUNCTIONAL SIGNIFICANCE OF MUSCLE CO-ACTIVATION AND RECURRENT INHIBITION ACTIVITY AT MOTOR SKILL LEARNING

Muscle co-activation which is one of the central nervous system’s action mechanisms is a phenomenon characterised by simultaneous activation of two or more muscles around a joint. Previous studies have reported that muscle co-activation levels could be different in athletes of different skill levels. In addition, skilled athletes should show a specific muscle activation pattern with a low level of co-activation of muscles which are typically involved in their discipline. Recent research suggests that high-level athletes (elite) have a different activation-relaxation and/or co-activation strategies than those of beginner and intermediate level athletes. Skilled athletes should show a different muscular-activation strategy, which is the result of changes in the spinal and supraspinal levels by mastering a specific movement pattern. Recurrent activity help acquire a specific movement pattern and causes a decrease in muscle co-activation. The purpose of the review is to discuss the functional significance of recurrent inhibition and co-activation modes of motor control on sporting performance

___

  • Andrade, R., Araşjo, R.C., Tucci, H.T., Martins, J., Oliveira, A.S. “Coactivation of the shoulder and arm muscles during closed kinetic chain exercises on an unstable surface”, Singapore Med J; 52(1): 35, 2011.
  • Bazzucchi I., Riccio, M.E., Felici, F. “Tennis pla- yers show a lower coactivation of the elbow anta- gonist muscles during isokinetic exercises”, J. Electromyogr Kinesiol; 18(5):752-9, 2008.
  • Sbriccoli, P., Camomilla, V., Di Mario, A., Quinzi, F., Figura, F., Felici, F. “Neuromuscular control adaptations in elite athletes: the case of top level ka- rateka” Eur J Appl Physiol; 108:1269–1280, 2010.
  • Busse, M.E., Wıles, C.M., Van Deursen., R.W.M. “Muscle Co-Activation In Neurological Conditions” Physical Therapy Reviews; 10: 247–253, 2005.
  • Nakazawa, K., Kawashima, N., Akai, M. et al. “On the reflex coactivation of ankle flexor and extensor muscles induced by a sudden drop of support surfa- ce during walking in humans”, J Appl Physiol, 96:604–11, 2004.
  • Milner, T.E. “Adaptation to destabilizing dynamics by means of muscle cocontraction”, Exp Brain Res,143:406–16, 2002.
  • Vereijken, B, Whiting, H.T., Newell, K.M. Free- zing degrees of freedom in skill acquisition. J Mo- tor Behav, 24:133–42, 1992.
  • Macaluso, A., De Vito, G. “Muscle strength, power and adaptations to resistance training in older peop- le”, Eur J Appl Physiol 91:450–72, 2004.
  • Gribble, P.L., Mullin, L.I., Cothros, N. et al. “Role of cocontraction in arm movement accuracy”, J Ne- urophysiol, 89:2396–405, 2003.
  • Ertan, H., Kentel B., Tumer, S.T., Korkusuz, F. “Activation patterns in forearm muscles during arc- hery shooting”, Human Movement Science, 22:37– 45, 2003.
  • Cerrah, A. O., Onarıcı Güngor, E., Soylu, A. R., Ertan, H., Lees, A., Bayrak, C. "Muscular Activa- tion patterns during the Soccer In-Step Kick", Iso- kinetics and Exercise Science, 19(3),181-190, 2011.
  • Onarıcı Güngör, E., Cerrah, A.O., Soylu, A.R., Ertan, H., Sevil, G. “Muscular activation strategies during countermovement jump in female volley- ball”, International Association of Computer Scien- ce in Sport, Proceedings of the Seventh Internatio- nal Symposium, 136-146, 2009.
  • Purves, D., Augustine, G.J., Fitzpatrick, D., Hall W.C., LaMantia, A.S., James O. McNamara & Le- onard E. White; Sinauer. Neuroscience. (Fourth Edition), 371-382, 2008.
  • Ilya, A. Rybak, Dmitry, G., Ivashko, Boris, I., Prilutsky, M. Anthony Lewis, and John K. Chapin. “Modeling neural control of locomotion: Integra- tion of Reflex Circuits with CPG”, Springer- Andrlag Berlin Heidelberg, pp. 99-104, 2002.
  • Akazaw, K.A. and Kato., K. “Neural network mo- del for control of muscle force based on the size principle of motor unit”. Proceedings of the IEEE, 78 (9) , 1990.
  • Rosenbaum, D.A. “Human motor control”, Second edition, Copyright © Elsevier Inc, 2010.
  • Prashanth, P.S., Chakravarthy, V.S. “An oscillator theory of motor unit recruitment”, Biol Cybern, 97:351–361, 2007.
  • Hodson, E.F., James, T., Wakeling. M. “Motor unit recruitment for dynamic tasks: current understan- ding and future directions”, Comp Physiol B, 179:57–66, 2009.
  • Shumway-Cook, A., Woollacott, M.H. “Motor Control–translating research into clinical practice”, Lippincott Williams & Wilkins, Philadelphia, 2007.
  • Trew, M., Everett, T. “Human Movement: An Introductory Text”, Chapter 4, Bernhard Haas, 6. Edition, 49-50, 2010.
  • Griffin, D.M. “Primate Motor Cortex: Individual and ensemble neuron-muscle output relationships”, B.S. (Biology), University of Kansas, 2000.
  • Patrick J. Lee, Ellen, L., Rogers, and Kevin P. Granata. “Active trunk stiffness increases with co- contraction”, J Electromyogr Kinesiol, 16(1): 51– 57, 2006.
  • Folland, JP., Williams, AG. “The adaptations to strength training: morphological and neurological contributions to increased strength”, Sports Med, 37(2):145-68, 2007.
  • De Luca, C.J. and Mambrito, B. “Voluntary control of motor units in human antagonist muscles: coacti- vation and reciprocal activation”, J Neurophysiol, 58: 525-542, 1987.
  • Iyer, M.B., Christakos, C.N., Ghez, C. “Coherent modulations of human motor unit discharges during quasi-sinusoidal isometric muscle contractions”, Neurosci Lett, 170: 94–98, 1994.
  • Marsden, J., Farmer, S., Halliday, D., Rosenberg, J., Brown, P. “The unilateral and bilateral control of motor unit pairs in the first dorsal interosseous and paraspinal muscles in man”, J Physiol, 521: 553– 564, 1999.
  • Semmler, J.G., Nordstrom, M.A., Wallace, C.J. “Relationship between motor unit short-term synch- ronization and common drive in human first dorsal interosseous muscle”, Brain Res, 767: 314–320, 1997.
  • Erim, Z., De Luca, C., Mineo, K., Aoki, T. Rank- ordered regulation of motor units. Muscle Nerve, 19:563–573,1996
  • Latash, M.L., Neurophysiological Basis of Move- ment, Human Kinetics,145-151, 1998.
  • Deseilligny, E.P. and Burke, D. “The circuitry of the human spinal cord: Its role in motor control and movement disorders”, Cambridge: Cambridge Uni- versity Press, 519-522, 2005.
  • Kasser, R.J. and Cheney, P.D. “Characteristics of corticomotoneuronal postspike facilitation and re- ciprocal suppression of emg activity in the mon- key”, 1. Neurophysiol, 53: 959-978, 1985.
  • Pierrot-deseilligny, E., Burke, D. “The circuitry of the human spinal cord: its role in motor control and movement disorders”, Cambridge university press, 222-227, 519-522, 2005.
  • Burke, R.E. John Eccles' “Pioneering role in un- derstanding central synaptic transmission. Prog Ne- urobiol, 78, 173–188, 2006.
  • Alvarez, F.J. and Fyffe, R.E.W. “The continuing case for the Renshaw cell”, J Physiol, 584.1: 31–45, 2007.
  • Ellaway, P. H. “Recurrent inhibition of fusimotor neurones exhibiting background discharges in the decerebrate and the spinal cat”, J. Physiol. (Lond.), 216: 419-439, 1971.
  • Uchiyama, T. and Windhorst, U. “Effects of spinal recurrent inhibition on motoneuron short-term synchronization”, Biol Cybern, 96:561–575, 2007.
  • Ryall, R. W. “Renshaw cell mediated inhibition of Renshaw cells: Patterns of excitation and inhibition from impulses in motor axon collaterals”, J. Neu- rophysiol, 33, 257-270, 1970.
  • Christopher, A.K. “Analysis of human motor unit discharge variability: Changes with aging and mo- tor learning”, Christopher Anson Knight, University of Massachusetts Amherst, PhD Thesis, 2003.
  • Hultborn, H., Brownstone, R.B., Toth, T.I., Gos- sard, J.P. “Key mechanisms for setting the input- output gain across the motoneuron pool”, Prog. Brain Res 2004; 143, 77–95.
  • Hultborn, H. “Spinal reflexes, mechanisms and concepts: From Eccles to Lundberg and beyond Progress in Neurobiology”, 78: 215–232, 2006.
  • Knikou, M. “Effects of changes in hip position on actions of spinal inhibitory interneurons in hu- mans”. Int J Neurosci, 116:945–61, 2006.